Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891922614> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2891922614 endingPage "35" @default.
- W2891922614 startingPage "13" @default.
- W2891922614 abstract "This article presents a method to predict the medical resources required to be dispatched after large-scale disasters to satisfy the demand. The historical data of past incidents (earthquakes, floods) regarding the number of victims requested emergency medical services and hospitalisation, simulation tools, web services and machine learning techniques have been combined. The authors adopted a twofold approach: a) use of web services and simulation tools to predict the potential number of victims and b) use of historical data and self-trained algorithms to “learn” from these data and provide relative predictions. Comparing actual and predicted victims needed hospitalisation showed that the proposed models can predict the medical resources required to be dispatched with acceptable errors. The results are promoting the use of electronic platforms able to coordinate an emergency medical response since these platforms can collect big heterogeneous datasets necessary to optimise the performance of the suggested algorithms." @default.
- W2891922614 created "2018-09-27" @default.
- W2891922614 creator A5051770065 @default.
- W2891922614 creator A5070253818 @default.
- W2891922614 date "2018-07-01" @default.
- W2891922614 modified "2023-10-04" @default.
- W2891922614 title "Predicting Medical Resources Required to be Dispatched After Earthquake and Flood, Using Historical Data and Machine Learning Techniques" @default.
- W2891922614 cites W1566311988 @default.
- W2891922614 cites W162209368 @default.
- W2891922614 cites W1980129459 @default.
- W2891922614 cites W1981806743 @default.
- W2891922614 cites W1991202076 @default.
- W2891922614 cites W1997276660 @default.
- W2891922614 cites W2010955799 @default.
- W2891922614 cites W2025180507 @default.
- W2891922614 cites W2026619093 @default.
- W2891922614 cites W2034463056 @default.
- W2891922614 cites W2035560991 @default.
- W2891922614 cites W2075760991 @default.
- W2891922614 cites W2114634792 @default.
- W2891922614 cites W2159397589 @default.
- W2891922614 cites W2161236168 @default.
- W2891922614 cites W2317006628 @default.
- W2891922614 cites W2476319576 @default.
- W2891922614 cites W3146191163 @default.
- W2891922614 cites W850104604 @default.
- W2891922614 doi "https://doi.org/10.4018/ijicst.2018070102" @default.
- W2891922614 hasPublicationYear "2018" @default.
- W2891922614 type Work @default.
- W2891922614 sameAs 2891922614 @default.
- W2891922614 citedByCount "2" @default.
- W2891922614 countsByYear W28919226142022 @default.
- W2891922614 crossrefType "journal-article" @default.
- W2891922614 hasAuthorship W2891922614A5051770065 @default.
- W2891922614 hasAuthorship W2891922614A5070253818 @default.
- W2891922614 hasConcept C119857082 @default.
- W2891922614 hasConcept C124101348 @default.
- W2891922614 hasConcept C166957645 @default.
- W2891922614 hasConcept C205649164 @default.
- W2891922614 hasConcept C2522767166 @default.
- W2891922614 hasConcept C2778755073 @default.
- W2891922614 hasConcept C41008148 @default.
- W2891922614 hasConcept C58640448 @default.
- W2891922614 hasConcept C74256435 @default.
- W2891922614 hasConcept C75684735 @default.
- W2891922614 hasConceptScore W2891922614C119857082 @default.
- W2891922614 hasConceptScore W2891922614C124101348 @default.
- W2891922614 hasConceptScore W2891922614C166957645 @default.
- W2891922614 hasConceptScore W2891922614C205649164 @default.
- W2891922614 hasConceptScore W2891922614C2522767166 @default.
- W2891922614 hasConceptScore W2891922614C2778755073 @default.
- W2891922614 hasConceptScore W2891922614C41008148 @default.
- W2891922614 hasConceptScore W2891922614C58640448 @default.
- W2891922614 hasConceptScore W2891922614C74256435 @default.
- W2891922614 hasConceptScore W2891922614C75684735 @default.
- W2891922614 hasIssue "2" @default.
- W2891922614 hasLocation W28919226141 @default.
- W2891922614 hasOpenAccess W2891922614 @default.
- W2891922614 hasPrimaryLocation W28919226141 @default.
- W2891922614 hasRelatedWork W1039292361 @default.
- W2891922614 hasRelatedWork W1969825948 @default.
- W2891922614 hasRelatedWork W2519706319 @default.
- W2891922614 hasRelatedWork W2762654418 @default.
- W2891922614 hasRelatedWork W2767632110 @default.
- W2891922614 hasRelatedWork W2792109275 @default.
- W2891922614 hasRelatedWork W280853923 @default.
- W2891922614 hasRelatedWork W2972650116 @default.
- W2891922614 hasRelatedWork W3095362084 @default.
- W2891922614 hasRelatedWork W2551093110 @default.
- W2891922614 hasVolume "8" @default.
- W2891922614 isParatext "false" @default.
- W2891922614 isRetracted "false" @default.
- W2891922614 magId "2891922614" @default.
- W2891922614 workType "article" @default.