Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891927769> ?p ?o ?g. }
- W2891927769 endingPage "695" @default.
- W2891927769 startingPage "679" @default.
- W2891927769 abstract "The efficiency of distributed energy systems can be significantly increased through waste heat recovery from industry or power generation. The technologies used for this process are typically dependent on the quality and temperature grades of waste heat. To maximize the efficiency of cascade heat utilization, it is important to optimize the choice of waste heat recovery technologies and their operation. In this paper, a detailed mixed integer linear programming optimization model is proposed for waste heat recovery in a district-scale microgrid. The model can distinguish waste heat quality for planning and operation optimization of distributed energy systems. Heat utilization technologies are formulated in this developed model and categorized in different temperature grades. The developed model is validated using four typical cases under different settings of system operation and business models. It is found that the optimization model, by distinguishing waste heat temperature, can increase energy cost savings by around 5%, compared to models that do not consider waste heat temperature grades. Additionally, the results indicate that the developed model can provide more realistic configuration and technologies dispatch." @default.
- W2891927769 created "2018-09-27" @default.
- W2891927769 creator A5002818704 @default.
- W2891927769 creator A5010470029 @default.
- W2891927769 creator A5012672471 @default.
- W2891927769 creator A5038103099 @default.
- W2891927769 creator A5088374149 @default.
- W2891927769 date "2018-11-01" @default.
- W2891927769 modified "2023-10-12" @default.
- W2891927769 title "Cascade energy optimization for waste heat recovery in distributed energy systems" @default.
- W2891927769 cites W1539422161 @default.
- W2891927769 cites W1967517940 @default.
- W2891927769 cites W1971706381 @default.
- W2891927769 cites W1976131708 @default.
- W2891927769 cites W1978162332 @default.
- W2891927769 cites W1983507474 @default.
- W2891927769 cites W1983999680 @default.
- W2891927769 cites W1997188340 @default.
- W2891927769 cites W2001760759 @default.
- W2891927769 cites W2002309489 @default.
- W2891927769 cites W2006865772 @default.
- W2891927769 cites W2008521473 @default.
- W2891927769 cites W2014919795 @default.
- W2891927769 cites W2022096372 @default.
- W2891927769 cites W2023792079 @default.
- W2891927769 cites W2028237431 @default.
- W2891927769 cites W2036946577 @default.
- W2891927769 cites W2037485309 @default.
- W2891927769 cites W2037806976 @default.
- W2891927769 cites W2040825058 @default.
- W2891927769 cites W2048844057 @default.
- W2891927769 cites W2050422139 @default.
- W2891927769 cites W2056927229 @default.
- W2891927769 cites W2063210767 @default.
- W2891927769 cites W2063556029 @default.
- W2891927769 cites W2080340557 @default.
- W2891927769 cites W2089299798 @default.
- W2891927769 cites W2094424470 @default.
- W2891927769 cites W2111708985 @default.
- W2891927769 cites W2134084938 @default.
- W2891927769 cites W2142969329 @default.
- W2891927769 cites W2152972694 @default.
- W2891927769 cites W2179486134 @default.
- W2891927769 cites W2239543649 @default.
- W2891927769 cites W2300069067 @default.
- W2891927769 cites W2342921158 @default.
- W2891927769 cites W2433783926 @default.
- W2891927769 cites W2468042592 @default.
- W2891927769 cites W2516610586 @default.
- W2891927769 cites W2521457232 @default.
- W2891927769 cites W2549784198 @default.
- W2891927769 cites W2557701127 @default.
- W2891927769 cites W2589784195 @default.
- W2891927769 cites W2615951230 @default.
- W2891927769 cites W2623547241 @default.
- W2891927769 cites W2751690553 @default.
- W2891927769 cites W2752802995 @default.
- W2891927769 cites W2766307400 @default.
- W2891927769 cites W2774402410 @default.
- W2891927769 cites W363468993 @default.
- W2891927769 doi "https://doi.org/10.1016/j.apenergy.2018.08.124" @default.
- W2891927769 hasPublicationYear "2018" @default.
- W2891927769 type Work @default.
- W2891927769 sameAs 2891927769 @default.
- W2891927769 citedByCount "51" @default.
- W2891927769 countsByYear W28919277692019 @default.
- W2891927769 countsByYear W28919277692020 @default.
- W2891927769 countsByYear W28919277692021 @default.
- W2891927769 countsByYear W28919277692022 @default.
- W2891927769 countsByYear W28919277692023 @default.
- W2891927769 crossrefType "journal-article" @default.
- W2891927769 hasAuthorship W2891927769A5002818704 @default.
- W2891927769 hasAuthorship W2891927769A5010470029 @default.
- W2891927769 hasAuthorship W2891927769A5012672471 @default.
- W2891927769 hasAuthorship W2891927769A5038103099 @default.
- W2891927769 hasAuthorship W2891927769A5088374149 @default.
- W2891927769 hasBestOaLocation W28919277691 @default.
- W2891927769 hasConcept C105994980 @default.
- W2891927769 hasConcept C107706546 @default.
- W2891927769 hasConcept C121332964 @default.
- W2891927769 hasConcept C127413603 @default.
- W2891927769 hasConcept C141675481 @default.
- W2891927769 hasConcept C184235594 @default.
- W2891927769 hasConcept C186370098 @default.
- W2891927769 hasConcept C21880701 @default.
- W2891927769 hasConcept C34146451 @default.
- W2891927769 hasConcept C39432304 @default.
- W2891927769 hasConcept C41008148 @default.
- W2891927769 hasConcept C42360764 @default.
- W2891927769 hasConcept C548081761 @default.
- W2891927769 hasConcept C62520636 @default.
- W2891927769 hasConcept C78519656 @default.
- W2891927769 hasConceptScore W2891927769C105994980 @default.
- W2891927769 hasConceptScore W2891927769C107706546 @default.
- W2891927769 hasConceptScore W2891927769C121332964 @default.
- W2891927769 hasConceptScore W2891927769C127413603 @default.
- W2891927769 hasConceptScore W2891927769C141675481 @default.
- W2891927769 hasConceptScore W2891927769C184235594 @default.