Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891950435> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2891950435 endingPage "S309" @default.
- W2891950435 startingPage "S308" @default.
- W2891950435 abstract "FMRI data are acquired as complex-valued spatiotemporal images. Despite the fact that several studies have identified the presence of novel information in the phase images, they are usually discarded due to their noisy nature. Several approaches have been devised to incorporate magnitude and phase data, but none of them has performed between-group inference or classification. Multiple kernel learning (MKL) is a powerful field of machine learning that finds an automatic combination of kernel functions that can be applied to multiple data sources. By analyzing this combination of kernels, the most informative data sources can be found, hence providing a better understanding of the analyzed learning task. This paper presents a methodology based on a new MKL algorithm (ν-MKL) capable of achieving a tunable sparse selection of features' sets (brain regions' patterns) that improves the classification accuracy rate of healthy controls and schizophrenia patients by 5% when phase data is included. In addition, the proposed method achieves accuracy rates that are equivalent to those obtained by the state of the art lp-norm MKL algorithm on the schizophrenia dataset and we argue that it better identifies the brain regions that show discriminative activation between groups. This claim is supported by the more accurate detection achieved by ν-MKL of the degree of information present on regions of spatial maps extracted from a simulated fMRI dataset. In summary, we present an MKL-based methodology that improves schizophrenia characterization by using both magnitude and phase fMRI data and is also capable of detecting the brain regions that convey most of the discriminative information between patients and controls." @default.
- W2891950435 created "2018-09-27" @default.
- W2891950435 creator A5014065311 @default.
- W2891950435 creator A5087349166 @default.
- W2891950435 date "2016-10-01" @default.
- W2891950435 modified "2023-09-25" @default.
- W2891950435 title "Abnormalities in the effective connectivity of thalamocortical circuitry in schizophrenia" @default.
- W2891950435 doi "https://doi.org/10.1016/s0924-977x(16)31214-7" @default.
- W2891950435 hasPublicationYear "2016" @default.
- W2891950435 type Work @default.
- W2891950435 sameAs 2891950435 @default.
- W2891950435 citedByCount "0" @default.
- W2891950435 crossrefType "journal-article" @default.
- W2891950435 hasAuthorship W2891950435A5014065311 @default.
- W2891950435 hasAuthorship W2891950435A5087349166 @default.
- W2891950435 hasConcept C114614502 @default.
- W2891950435 hasConcept C119857082 @default.
- W2891950435 hasConcept C122280245 @default.
- W2891950435 hasConcept C12267149 @default.
- W2891950435 hasConcept C153180895 @default.
- W2891950435 hasConcept C154945302 @default.
- W2891950435 hasConcept C199360897 @default.
- W2891950435 hasConcept C2776214188 @default.
- W2891950435 hasConcept C2776412080 @default.
- W2891950435 hasConcept C2776879701 @default.
- W2891950435 hasConcept C33923547 @default.
- W2891950435 hasConcept C41008148 @default.
- W2891950435 hasConcept C74193536 @default.
- W2891950435 hasConcept C81917197 @default.
- W2891950435 hasConcept C97931131 @default.
- W2891950435 hasConceptScore W2891950435C114614502 @default.
- W2891950435 hasConceptScore W2891950435C119857082 @default.
- W2891950435 hasConceptScore W2891950435C122280245 @default.
- W2891950435 hasConceptScore W2891950435C12267149 @default.
- W2891950435 hasConceptScore W2891950435C153180895 @default.
- W2891950435 hasConceptScore W2891950435C154945302 @default.
- W2891950435 hasConceptScore W2891950435C199360897 @default.
- W2891950435 hasConceptScore W2891950435C2776214188 @default.
- W2891950435 hasConceptScore W2891950435C2776412080 @default.
- W2891950435 hasConceptScore W2891950435C2776879701 @default.
- W2891950435 hasConceptScore W2891950435C33923547 @default.
- W2891950435 hasConceptScore W2891950435C41008148 @default.
- W2891950435 hasConceptScore W2891950435C74193536 @default.
- W2891950435 hasConceptScore W2891950435C81917197 @default.
- W2891950435 hasConceptScore W2891950435C97931131 @default.
- W2891950435 hasLocation W28919504351 @default.
- W2891950435 hasOpenAccess W2891950435 @default.
- W2891950435 hasPrimaryLocation W28919504351 @default.
- W2891950435 hasRelatedWork W2121902652 @default.
- W2891950435 hasRelatedWork W2141705618 @default.
- W2891950435 hasRelatedWork W2203099733 @default.
- W2891950435 hasRelatedWork W2340694410 @default.
- W2891950435 hasRelatedWork W2348964713 @default.
- W2891950435 hasRelatedWork W2384238806 @default.
- W2891950435 hasRelatedWork W2494485523 @default.
- W2891950435 hasRelatedWork W2897194639 @default.
- W2891950435 hasRelatedWork W630878995 @default.
- W2891950435 hasRelatedWork W1968959457 @default.
- W2891950435 hasVolume "26" @default.
- W2891950435 isParatext "false" @default.
- W2891950435 isRetracted "false" @default.
- W2891950435 magId "2891950435" @default.
- W2891950435 workType "article" @default.