Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891959861> ?p ?o ?g. }
- W2891959861 endingPage "14" @default.
- W2891959861 startingPage "1" @default.
- W2891959861 abstract "We propose a method for generating video-realistic animations of real humans under user control. In contrast to conventional human character rendering, we do not require the availability of a production-quality photo-realistic three-dimensional (3D) model of the human but instead rely on a video sequence in conjunction with a (medium-quality) controllable 3D template model of the person. With that, our approach significantly reduces production cost compared to conventional rendering approaches based on production-quality 3D models and can also be used to realistically edit existing videos. Technically, this is achieved by training a neural network that translates simple synthetic images of a human character into realistic imagery. For training our networks, we first track the 3D motion of the person in the video using the template model and subsequently generate a synthetically rendered version of the video. These images are then used to train a conditional generative adversarial network that translates synthetic images of the 3D model into realistic imagery of the human. We evaluate our method for the reenactment of another person that is tracked to obtain the motion data, and show video results generated from artist-designed skeleton motion. Our results outperform the state of the art in learning-based human image synthesis." @default.
- W2891959861 created "2018-09-27" @default.
- W2891959861 creator A5005789795 @default.
- W2891959861 creator A5020664641 @default.
- W2891959861 creator A5033764099 @default.
- W2891959861 creator A5039500794 @default.
- W2891959861 creator A5045111379 @default.
- W2891959861 creator A5046744046 @default.
- W2891959861 creator A5056083424 @default.
- W2891959861 creator A5087345525 @default.
- W2891959861 date "2019-10-25" @default.
- W2891959861 modified "2023-10-16" @default.
- W2891959861 title "Neural Rendering and Reenactment of Human Actor Videos" @default.
- W2891959861 cites W1834323716 @default.
- W2891959861 cites W1901129140 @default.
- W2891959861 cites W1966718790 @default.
- W2891959861 cites W1967554269 @default.
- W2891959861 cites W1989191365 @default.
- W2891959861 cites W2001358217 @default.
- W2891959861 cites W2005984284 @default.
- W2891959861 cites W2040322039 @default.
- W2891959861 cites W2040436296 @default.
- W2891959861 cites W2044618760 @default.
- W2891959861 cites W2058676365 @default.
- W2891959861 cites W2069742738 @default.
- W2891959861 cites W2070004190 @default.
- W2891959861 cites W2076017598 @default.
- W2891959861 cites W2079846689 @default.
- W2891959861 cites W2100495367 @default.
- W2891959861 cites W2110434318 @default.
- W2891959861 cites W2115929896 @default.
- W2891959861 cites W2117888987 @default.
- W2891959861 cites W2142540472 @default.
- W2891959861 cites W2149321585 @default.
- W2891959861 cites W2152047877 @default.
- W2891959861 cites W2153903029 @default.
- W2891959861 cites W2165350702 @default.
- W2891959861 cites W2175012183 @default.
- W2891959861 cites W2221659194 @default.
- W2891959861 cites W2237250383 @default.
- W2891959861 cites W2295660824 @default.
- W2891959861 cites W2339787603 @default.
- W2891959861 cites W2461005315 @default.
- W2891959861 cites W2522527348 @default.
- W2891959861 cites W2554247908 @default.
- W2891959861 cites W2555445683 @default.
- W2891959861 cites W2611932403 @default.
- W2891959861 cites W2768345177 @default.
- W2891959861 cites W2768683308 @default.
- W2891959861 cites W2769666294 @default.
- W2891959861 cites W2771558241 @default.
- W2891959861 cites W2806833697 @default.
- W2891959861 cites W2962963674 @default.
- W2891959861 cites W2962982136 @default.
- W2891959861 cites W2963444790 @default.
- W2891959861 cites W2963522749 @default.
- W2891959861 cites W2963709863 @default.
- W2891959861 cites W2963732450 @default.
- W2891959861 cites W2963767194 @default.
- W2891959861 cites W2963800363 @default.
- W2891959861 cites W2963869461 @default.
- W2891959861 cites W2964002510 @default.
- W2891959861 cites W2964304707 @default.
- W2891959861 cites W4242146635 @default.
- W2891959861 cites W4248870381 @default.
- W2891959861 cites W4249522571 @default.
- W2891959861 doi "https://doi.org/10.1145/3333002" @default.
- W2891959861 hasPublicationYear "2019" @default.
- W2891959861 type Work @default.
- W2891959861 sameAs 2891959861 @default.
- W2891959861 citedByCount "111" @default.
- W2891959861 countsByYear W28919598612018 @default.
- W2891959861 countsByYear W28919598612019 @default.
- W2891959861 countsByYear W28919598612020 @default.
- W2891959861 countsByYear W28919598612021 @default.
- W2891959861 countsByYear W28919598612022 @default.
- W2891959861 countsByYear W28919598612023 @default.
- W2891959861 crossrefType "journal-article" @default.
- W2891959861 hasAuthorship W2891959861A5005789795 @default.
- W2891959861 hasAuthorship W2891959861A5020664641 @default.
- W2891959861 hasAuthorship W2891959861A5033764099 @default.
- W2891959861 hasAuthorship W2891959861A5039500794 @default.
- W2891959861 hasAuthorship W2891959861A5045111379 @default.
- W2891959861 hasAuthorship W2891959861A5046744046 @default.
- W2891959861 hasAuthorship W2891959861A5056083424 @default.
- W2891959861 hasAuthorship W2891959861A5087345525 @default.
- W2891959861 hasBestOaLocation W28919598612 @default.
- W2891959861 hasConcept C104114177 @default.
- W2891959861 hasConcept C115961682 @default.
- W2891959861 hasConcept C121684516 @default.
- W2891959861 hasConcept C154945302 @default.
- W2891959861 hasConcept C205711294 @default.
- W2891959861 hasConcept C2779757391 @default.
- W2891959861 hasConcept C31972630 @default.
- W2891959861 hasConcept C41008148 @default.
- W2891959861 hasConcept C48007421 @default.
- W2891959861 hasConcept C50644808 @default.
- W2891959861 hasConceptScore W2891959861C104114177 @default.