Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891968130> ?p ?o ?g. }
- W2891968130 endingPage "697" @default.
- W2891968130 startingPage "688" @default.
- W2891968130 abstract "Purpose To develop and validate a deep learning system (DLS) for staging liver fibrosis by using CT images in the liver. Materials and Methods DLS for CT-based staging of liver fibrosis was created by using a development data set that included portal venous phase CT images in 7461 patients with pathologically confirmed liver fibrosis. The diagnostic performance of the DLS was evaluated in separate test data sets for 891 patients. The influence of patient characteristics and CT techniques on the staging accuracy of the DLS was evaluated by logistic regression analysis. In a subset of 421 patients, the diagnostic performance of the DLS was compared with that of the radiologist’s assessment, aminotransferase-to-platelet ratio index (APRI), and fibrosis-4 index by using the area under the receiver operating characteristic curve (AUROC) and Obuchowski index. Results In the test data sets, the DLS had a staging accuracy of 79.4% (707 of 891) and an AUROC of 0.96, 0.97, and 0.95 for diagnosing significant fibrosis (F2–4), advanced fibrosis (F3–4), and cirrhosis (F4), respectively. At multivariable analysis, only pathologic fibrosis stage significantly affected the staging accuracy of the DLS (P = .016 and .013 for F1 and F2, respectively, compared with F4), whereas etiology of liver disease and CT technique did not. The DLS (Obuchowski index, 0.94) outperformed the radiologist’s interpretation, APRI, and fibrosis-4 index (Obuchowski index range, 0.71–0.81; P ˂ .001) for staging liver fibrosis. Conclusion The deep learning system allows for accurate staging of liver fibrosis by using CT images. © RSNA, 2018 Online supplemental material is available for this article." @default.
- W2891968130 created "2018-09-27" @default.
- W2891968130 creator A5011840042 @default.
- W2891968130 creator A5018158717 @default.
- W2891968130 creator A5034228516 @default.
- W2891968130 creator A5039735690 @default.
- W2891968130 creator A5043301073 @default.
- W2891968130 creator A5052550275 @default.
- W2891968130 creator A5056046654 @default.
- W2891968130 creator A5070974897 @default.
- W2891968130 creator A5071928897 @default.
- W2891968130 creator A5078809545 @default.
- W2891968130 creator A5081481966 @default.
- W2891968130 creator A5082641741 @default.
- W2891968130 creator A5087109921 @default.
- W2891968130 date "2018-12-01" @default.
- W2891968130 modified "2023-09-30" @default.
- W2891968130 title "Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent–enhanced CT Images in the Liver" @default.
- W2891968130 cites W1852596538 @default.
- W2891968130 cites W1950968074 @default.
- W2891968130 cites W1965208459 @default.
- W2891968130 cites W1965565270 @default.
- W2891968130 cites W1997865776 @default.
- W2891968130 cites W2047941698 @default.
- W2891968130 cites W2051415174 @default.
- W2891968130 cites W2052781090 @default.
- W2891968130 cites W2054649919 @default.
- W2891968130 cites W2059298139 @default.
- W2891968130 cites W2064387090 @default.
- W2891968130 cites W2086719465 @default.
- W2891968130 cites W2091481662 @default.
- W2891968130 cites W2094174828 @default.
- W2891968130 cites W2114199647 @default.
- W2891968130 cites W2129714870 @default.
- W2891968130 cites W2134182464 @default.
- W2891968130 cites W2328176404 @default.
- W2891968130 cites W2337773972 @default.
- W2891968130 cites W2507717750 @default.
- W2891968130 cites W2557738935 @default.
- W2891968130 cites W2596381034 @default.
- W2891968130 cites W2608231518 @default.
- W2891968130 cites W2622132351 @default.
- W2891968130 cites W2727650337 @default.
- W2891968130 cites W2738547688 @default.
- W2891968130 cites W2738975713 @default.
- W2891968130 cites W2768130646 @default.
- W2891968130 cites W2770365418 @default.
- W2891968130 cites W2773708607 @default.
- W2891968130 cites W4247258598 @default.
- W2891968130 doi "https://doi.org/10.1148/radiol.2018180763" @default.
- W2891968130 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30179104" @default.
- W2891968130 hasPublicationYear "2018" @default.
- W2891968130 type Work @default.
- W2891968130 sameAs 2891968130 @default.
- W2891968130 citedByCount "134" @default.
- W2891968130 countsByYear W28919681302018 @default.
- W2891968130 countsByYear W28919681302019 @default.
- W2891968130 countsByYear W28919681302020 @default.
- W2891968130 countsByYear W28919681302021 @default.
- W2891968130 countsByYear W28919681302022 @default.
- W2891968130 countsByYear W28919681302023 @default.
- W2891968130 crossrefType "journal-article" @default.
- W2891968130 hasAuthorship W2891968130A5011840042 @default.
- W2891968130 hasAuthorship W2891968130A5018158717 @default.
- W2891968130 hasAuthorship W2891968130A5034228516 @default.
- W2891968130 hasAuthorship W2891968130A5039735690 @default.
- W2891968130 hasAuthorship W2891968130A5043301073 @default.
- W2891968130 hasAuthorship W2891968130A5052550275 @default.
- W2891968130 hasAuthorship W2891968130A5056046654 @default.
- W2891968130 hasAuthorship W2891968130A5070974897 @default.
- W2891968130 hasAuthorship W2891968130A5071928897 @default.
- W2891968130 hasAuthorship W2891968130A5078809545 @default.
- W2891968130 hasAuthorship W2891968130A5081481966 @default.
- W2891968130 hasAuthorship W2891968130A5082641741 @default.
- W2891968130 hasAuthorship W2891968130A5087109921 @default.
- W2891968130 hasConcept C126322002 @default.
- W2891968130 hasConcept C126838900 @default.
- W2891968130 hasConcept C146357865 @default.
- W2891968130 hasConcept C151730666 @default.
- W2891968130 hasConcept C2777214474 @default.
- W2891968130 hasConcept C2780559512 @default.
- W2891968130 hasConcept C2989005 @default.
- W2891968130 hasConcept C2994217296 @default.
- W2891968130 hasConcept C58471807 @default.
- W2891968130 hasConcept C71924100 @default.
- W2891968130 hasConcept C86803240 @default.
- W2891968130 hasConcept C90924648 @default.
- W2891968130 hasConceptScore W2891968130C126322002 @default.
- W2891968130 hasConceptScore W2891968130C126838900 @default.
- W2891968130 hasConceptScore W2891968130C146357865 @default.
- W2891968130 hasConceptScore W2891968130C151730666 @default.
- W2891968130 hasConceptScore W2891968130C2777214474 @default.
- W2891968130 hasConceptScore W2891968130C2780559512 @default.
- W2891968130 hasConceptScore W2891968130C2989005 @default.
- W2891968130 hasConceptScore W2891968130C2994217296 @default.
- W2891968130 hasConceptScore W2891968130C58471807 @default.
- W2891968130 hasConceptScore W2891968130C71924100 @default.
- W2891968130 hasConceptScore W2891968130C86803240 @default.