Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891975797> ?p ?o ?g. }
- W2891975797 endingPage "1850043" @default.
- W2891975797 startingPage "1850043" @default.
- W2891975797 abstract "Deep Learning offers flexible powerful tools that have advanced our understanding of the neural coding of neurosensory systems. In this work, a 3D Convolutional Neural Network (3D CNN) is used to mimic the behavior of a population of mice retinal ganglion cells in response to different light patterns. For this purpose, we projected homogeneous RGB flashes and checkerboards stimuli with variable luminances and wavelength spectrum to mimic a more naturalistic stimuli environment onto the mouse retina. We also used white moving bars in order to localize the spatial position of the recorded cells. Then recorded spikes were smoothed with a Gaussian kernel and used as the output target when training a 3D CNN in a supervised way. To find a suitable model, two hyperparameter search stages were performed. In the first stage, a trial and error process allowed us to obtain a system that is able to fit the neurons firing rates. In the second stage, a systematic procedure was used to compare several gradient-based optimizers, loss functions and the model’s convolutional layers number. We found that a three layered 3D CNN was able to predict the ganglion cells firing rates with high correlations and low prediction error, as measured with Mean Squared Error and Dynamic Time Warping in test sets. These models were either competitive or outperformed other models used already in neuroscience, as Feed Forward Neural Networks and Linear-Nonlinear models. This methodology allowed us to capture the temporal dynamic response patterns in a robust way, even for neurons with high trial-to-trial variable spontaneous firing rates, when providing the peristimulus time histogram as an output to our model." @default.
- W2891975797 created "2018-09-27" @default.
- W2891975797 creator A5009983639 @default.
- W2891975797 creator A5019433569 @default.
- W2891975797 creator A5037134228 @default.
- W2891975797 creator A5044754100 @default.
- W2891975797 creator A5064676136 @default.
- W2891975797 creator A5074545959 @default.
- W2891975797 date "2018-12-01" @default.
- W2891975797 modified "2023-10-03" @default.
- W2891975797 title "A 3D Convolutional Neural Network to Model Retinal Ganglion Cell’s Responses to Light Patterns in Mice" @default.
- W2891975797 cites W1965762557 @default.
- W2891975797 cites W1966638248 @default.
- W2891975797 cites W1967154579 @default.
- W2891975797 cites W1978677882 @default.
- W2891975797 cites W1979275115 @default.
- W2891975797 cites W1989786687 @default.
- W2891975797 cites W2027534408 @default.
- W2891975797 cites W2043630083 @default.
- W2891975797 cites W2069519142 @default.
- W2891975797 cites W2101926813 @default.
- W2891975797 cites W2109596721 @default.
- W2891975797 cites W2113748017 @default.
- W2891975797 cites W2116905996 @default.
- W2891975797 cites W2128160875 @default.
- W2891975797 cites W2130459697 @default.
- W2891975797 cites W2137983211 @default.
- W2891975797 cites W2138727818 @default.
- W2891975797 cites W2144994235 @default.
- W2891975797 cites W2159198041 @default.
- W2891975797 cites W2283006256 @default.
- W2891975797 cites W2335581174 @default.
- W2891975797 cites W2345463153 @default.
- W2891975797 cites W2569869865 @default.
- W2891975797 cites W2574750030 @default.
- W2891975797 cites W2747308919 @default.
- W2891975797 cites W2754735233 @default.
- W2891975797 cites W2759483166 @default.
- W2891975797 cites W2767522444 @default.
- W2891975797 cites W2781735277 @default.
- W2891975797 cites W2919115771 @default.
- W2891975797 cites W4238404964 @default.
- W2891975797 cites W4245474015 @default.
- W2891975797 cites W766819170 @default.
- W2891975797 doi "https://doi.org/10.1142/s0129065718500430" @default.
- W2891975797 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30556459" @default.
- W2891975797 hasPublicationYear "2018" @default.
- W2891975797 type Work @default.
- W2891975797 sameAs 2891975797 @default.
- W2891975797 citedByCount "10" @default.
- W2891975797 countsByYear W28919757972019 @default.
- W2891975797 countsByYear W28919757972020 @default.
- W2891975797 countsByYear W28919757972021 @default.
- W2891975797 countsByYear W28919757972022 @default.
- W2891975797 countsByYear W28919757972023 @default.
- W2891975797 crossrefType "journal-article" @default.
- W2891975797 hasAuthorship W2891975797A5009983639 @default.
- W2891975797 hasAuthorship W2891975797A5019433569 @default.
- W2891975797 hasAuthorship W2891975797A5037134228 @default.
- W2891975797 hasAuthorship W2891975797A5044754100 @default.
- W2891975797 hasAuthorship W2891975797A5064676136 @default.
- W2891975797 hasAuthorship W2891975797A5074545959 @default.
- W2891975797 hasConcept C144024400 @default.
- W2891975797 hasConcept C149923435 @default.
- W2891975797 hasConcept C153180895 @default.
- W2891975797 hasConcept C154945302 @default.
- W2891975797 hasConcept C169760540 @default.
- W2891975797 hasConcept C2777093970 @default.
- W2891975797 hasConcept C2777624874 @default.
- W2891975797 hasConcept C2908647359 @default.
- W2891975797 hasConcept C41008148 @default.
- W2891975797 hasConcept C81363708 @default.
- W2891975797 hasConcept C8642999 @default.
- W2891975797 hasConcept C86803240 @default.
- W2891975797 hasConceptScore W2891975797C144024400 @default.
- W2891975797 hasConceptScore W2891975797C149923435 @default.
- W2891975797 hasConceptScore W2891975797C153180895 @default.
- W2891975797 hasConceptScore W2891975797C154945302 @default.
- W2891975797 hasConceptScore W2891975797C169760540 @default.
- W2891975797 hasConceptScore W2891975797C2777093970 @default.
- W2891975797 hasConceptScore W2891975797C2777624874 @default.
- W2891975797 hasConceptScore W2891975797C2908647359 @default.
- W2891975797 hasConceptScore W2891975797C41008148 @default.
- W2891975797 hasConceptScore W2891975797C81363708 @default.
- W2891975797 hasConceptScore W2891975797C8642999 @default.
- W2891975797 hasConceptScore W2891975797C86803240 @default.
- W2891975797 hasIssue "10" @default.
- W2891975797 hasLocation W28919757971 @default.
- W2891975797 hasLocation W28919757972 @default.
- W2891975797 hasOpenAccess W2891975797 @default.
- W2891975797 hasPrimaryLocation W28919757971 @default.
- W2891975797 hasRelatedWork W2767651786 @default.
- W2891975797 hasRelatedWork W2912288872 @default.
- W2891975797 hasRelatedWork W3130227562 @default.
- W2891975797 hasRelatedWork W3216553692 @default.
- W2891975797 hasRelatedWork W4206951940 @default.
- W2891975797 hasRelatedWork W4293868382 @default.
- W2891975797 hasRelatedWork W4304182771 @default.