Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891976403> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2891976403 abstract "In recent years there is a growing interest in operating on graph signals. One systematic and productive such line of work is incorporating sparsity-inspired models to this data type, offering these signals a description as sparse linear combinations of atoms from a given dictionary. In this paper, we propose a dictionary learning algorithm for this task that is capable of handling high dimensional data. We incorporate the underlying graph topology by forcing the learned dictionary atoms to be sparse combinations of graph wavelet functions. The resulting atoms thus adhere to the underlying graph structure and possess a desired multi-scale property, yet they capture the prominent features of the data of interest. This results in both adaptive representations and an efficient implementation. Experimental results on different datasets, representing both synthetic and real network data, demonstrate the effectiveness of the proposed algorithm for graph signal processing." @default.
- W2891976403 created "2018-09-27" @default.
- W2891976403 creator A5020279598 @default.
- W2891976403 creator A5035855618 @default.
- W2891976403 date "2018-04-01" @default.
- W2891976403 modified "2023-09-27" @default.
- W2891976403 title "Dictionary Learning for High Dimensional Graph Signals" @default.
- W2891976403 cites W1988856158 @default.
- W2891976403 cites W2011925575 @default.
- W2891976403 cites W2099321050 @default.
- W2891976403 cites W2101491865 @default.
- W2891976403 cites W2107940287 @default.
- W2891976403 cites W2115429828 @default.
- W2891976403 cites W2158787690 @default.
- W2891976403 cites W2160547390 @default.
- W2891976403 cites W2160660350 @default.
- W2891976403 cites W2161401420 @default.
- W2891976403 cites W2273553327 @default.
- W2891976403 cites W2517949381 @default.
- W2891976403 doi "https://doi.org/10.1109/icassp.2018.8462609" @default.
- W2891976403 hasPublicationYear "2018" @default.
- W2891976403 type Work @default.
- W2891976403 sameAs 2891976403 @default.
- W2891976403 citedByCount "3" @default.
- W2891976403 countsByYear W28919764032018 @default.
- W2891976403 countsByYear W28919764032019 @default.
- W2891976403 crossrefType "proceedings-article" @default.
- W2891976403 hasAuthorship W2891976403A5020279598 @default.
- W2891976403 hasAuthorship W2891976403A5035855618 @default.
- W2891976403 hasConcept C111919701 @default.
- W2891976403 hasConcept C11413529 @default.
- W2891976403 hasConcept C132525143 @default.
- W2891976403 hasConcept C153180895 @default.
- W2891976403 hasConcept C154945302 @default.
- W2891976403 hasConcept C199845137 @default.
- W2891976403 hasConcept C2986651925 @default.
- W2891976403 hasConcept C41008148 @default.
- W2891976403 hasConcept C80444323 @default.
- W2891976403 hasConceptScore W2891976403C111919701 @default.
- W2891976403 hasConceptScore W2891976403C11413529 @default.
- W2891976403 hasConceptScore W2891976403C132525143 @default.
- W2891976403 hasConceptScore W2891976403C153180895 @default.
- W2891976403 hasConceptScore W2891976403C154945302 @default.
- W2891976403 hasConceptScore W2891976403C199845137 @default.
- W2891976403 hasConceptScore W2891976403C2986651925 @default.
- W2891976403 hasConceptScore W2891976403C41008148 @default.
- W2891976403 hasConceptScore W2891976403C80444323 @default.
- W2891976403 hasLocation W28919764031 @default.
- W2891976403 hasOpenAccess W2891976403 @default.
- W2891976403 hasPrimaryLocation W28919764031 @default.
- W2891976403 hasRelatedWork W1539012881 @default.
- W2891976403 hasRelatedWork W1933990309 @default.
- W2891976403 hasRelatedWork W2086522948 @default.
- W2891976403 hasRelatedWork W2089109195 @default.
- W2891976403 hasRelatedWork W2124543570 @default.
- W2891976403 hasRelatedWork W2141552007 @default.
- W2891976403 hasRelatedWork W2148056225 @default.
- W2891976403 hasRelatedWork W2160660350 @default.
- W2891976403 hasRelatedWork W2564717828 @default.
- W2891976403 hasRelatedWork W2610231118 @default.
- W2891976403 hasRelatedWork W2765989132 @default.
- W2891976403 hasRelatedWork W2808125774 @default.
- W2891976403 hasRelatedWork W2898110643 @default.
- W2891976403 hasRelatedWork W2953275220 @default.
- W2891976403 hasRelatedWork W2958703003 @default.
- W2891976403 hasRelatedWork W3012953444 @default.
- W2891976403 hasRelatedWork W3025553125 @default.
- W2891976403 hasRelatedWork W3081869089 @default.
- W2891976403 hasRelatedWork W3114230210 @default.
- W2891976403 hasRelatedWork W3153711428 @default.
- W2891976403 isParatext "false" @default.
- W2891976403 isRetracted "false" @default.
- W2891976403 magId "2891976403" @default.
- W2891976403 workType "article" @default.