Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891986072> ?p ?o ?g. }
- W2891986072 endingPage "291" @default.
- W2891986072 startingPage "271" @default.
- W2891986072 abstract "We conducted experimental measurements to examine the upward oil-water flow patterns in a vertical pipe (0.02 m I.D.) under high temperatures up to 130 °C and high pressures up to 20.51 MPa. The viscosity of the oil sample was 85.113 mPa·s at 40 °C. All the experiments were conducted with an in-house-built high pressure/temperature flow apparatus. This apparatus is equipped with a view window that allows us to visually observe the upward flow patterns of oil-water two-phase flow in a 0.02 m I.D. stainless steel pipe. The effects of pressure, temperature, input water fraction (IWF) and mixture flow rate on the flow patterns and friction pressure gradients were systematically investigated. We plot the observed flow patterns on a flow pattern map in which input water fraction was used as the y-axis and the mixture flow velocity was used as the x-axis. Based on the measurement results, we observed nine flow patterns including four water-in-oil flow, transition flow and four oil-in-water flow patterns. With an increase in temperature at a given input water fraction, slug flow, plug flow with large water drops tended to transform into bubbly flow and dispersed flow with smaller water drops, water-in-oil very dense bubbly flow (VDB W/O) was observed at high temperature due to the significantly increasing of in-situ water holdups. The transition flow and the boundaries in the flow pattern maps tend to occur at lower input water fraction values. The effect of pressure on the flow patterns was found to be opposite to that of temperature. The possible causes leading to the changes in the flow patterns subjected to pressure/temperature variations were provided in terms of changes in density ratio, interfacial tension, and viscosity ratio between oil and water. The phase inversion points at different temperatures and pressures reflected from friction pressure gradients were found to be in agreement with the results of flow patterns. This work contributes to a better understanding of oil-water two-phase flow behavior under high temperature/pressure." @default.
- W2891986072 created "2018-09-27" @default.
- W2891986072 creator A5007322337 @default.
- W2891986072 creator A5022666726 @default.
- W2891986072 creator A5026283768 @default.
- W2891986072 creator A5031404884 @default.
- W2891986072 creator A5037341155 @default.
- W2891986072 creator A5040080213 @default.
- W2891986072 creator A5041521718 @default.
- W2891986072 creator A5084530020 @default.
- W2891986072 creator A5087133964 @default.
- W2891986072 date "2019-01-01" @default.
- W2891986072 modified "2023-10-03" @default.
- W2891986072 title "Oil-Water flow patterns, holdups and frictional pressure gradients in a vertical pipe under high temperature/pressure conditions" @default.
- W2891986072 cites W1963853511 @default.
- W2891986072 cites W1971747920 @default.
- W2891986072 cites W1975813682 @default.
- W2891986072 cites W1977994756 @default.
- W2891986072 cites W1986375721 @default.
- W2891986072 cites W1987448193 @default.
- W2891986072 cites W1988778053 @default.
- W2891986072 cites W1992665825 @default.
- W2891986072 cites W1998818421 @default.
- W2891986072 cites W2001294800 @default.
- W2891986072 cites W2002910903 @default.
- W2891986072 cites W2010089673 @default.
- W2891986072 cites W2010364254 @default.
- W2891986072 cites W2019002874 @default.
- W2891986072 cites W2019758240 @default.
- W2891986072 cites W2020693202 @default.
- W2891986072 cites W2024103350 @default.
- W2891986072 cites W2028489416 @default.
- W2891986072 cites W2032828621 @default.
- W2891986072 cites W2035955206 @default.
- W2891986072 cites W2036152764 @default.
- W2891986072 cites W2038973420 @default.
- W2891986072 cites W2039806265 @default.
- W2891986072 cites W2049613338 @default.
- W2891986072 cites W2054186888 @default.
- W2891986072 cites W2057088057 @default.
- W2891986072 cites W2063015838 @default.
- W2891986072 cites W2064464412 @default.
- W2891986072 cites W2065040892 @default.
- W2891986072 cites W2067024370 @default.
- W2891986072 cites W2070677481 @default.
- W2891986072 cites W2074322019 @default.
- W2891986072 cites W2074469720 @default.
- W2891986072 cites W2078088459 @default.
- W2891986072 cites W2083038992 @default.
- W2891986072 cites W2084573902 @default.
- W2891986072 cites W2086971184 @default.
- W2891986072 cites W2095331973 @default.
- W2891986072 cites W2104775226 @default.
- W2891986072 cites W2115472437 @default.
- W2891986072 cites W2155197855 @default.
- W2891986072 cites W2184418374 @default.
- W2891986072 cites W2220620989 @default.
- W2891986072 cites W2368685007 @default.
- W2891986072 cites W2516073015 @default.
- W2891986072 cites W2759052113 @default.
- W2891986072 doi "https://doi.org/10.1016/j.expthermflusci.2018.09.013" @default.
- W2891986072 hasPublicationYear "2019" @default.
- W2891986072 type Work @default.
- W2891986072 sameAs 2891986072 @default.
- W2891986072 citedByCount "7" @default.
- W2891986072 countsByYear W28919860722020 @default.
- W2891986072 countsByYear W28919860722021 @default.
- W2891986072 countsByYear W28919860722023 @default.
- W2891986072 crossrefType "journal-article" @default.
- W2891986072 hasAuthorship W2891986072A5007322337 @default.
- W2891986072 hasAuthorship W2891986072A5022666726 @default.
- W2891986072 hasAuthorship W2891986072A5026283768 @default.
- W2891986072 hasAuthorship W2891986072A5031404884 @default.
- W2891986072 hasAuthorship W2891986072A5037341155 @default.
- W2891986072 hasAuthorship W2891986072A5040080213 @default.
- W2891986072 hasAuthorship W2891986072A5041521718 @default.
- W2891986072 hasAuthorship W2891986072A5084530020 @default.
- W2891986072 hasAuthorship W2891986072A5087133964 @default.
- W2891986072 hasConcept C121332964 @default.
- W2891986072 hasConcept C127313418 @default.
- W2891986072 hasConcept C139514615 @default.
- W2891986072 hasConcept C143428516 @default.
- W2891986072 hasConcept C144308804 @default.
- W2891986072 hasConcept C172120300 @default.
- W2891986072 hasConcept C180925781 @default.
- W2891986072 hasConcept C187320778 @default.
- W2891986072 hasConcept C191545125 @default.
- W2891986072 hasConcept C192562407 @default.
- W2891986072 hasConcept C23898865 @default.
- W2891986072 hasConcept C2988574769 @default.
- W2891986072 hasConcept C38349280 @default.
- W2891986072 hasConcept C57879066 @default.
- W2891986072 hasConceptScore W2891986072C121332964 @default.
- W2891986072 hasConceptScore W2891986072C127313418 @default.
- W2891986072 hasConceptScore W2891986072C139514615 @default.
- W2891986072 hasConceptScore W2891986072C143428516 @default.
- W2891986072 hasConceptScore W2891986072C144308804 @default.
- W2891986072 hasConceptScore W2891986072C172120300 @default.