Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891994532> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2891994532 endingPage "433" @default.
- W2891994532 startingPage "426" @default.
- W2891994532 abstract "This paper introduces a new type of deep learning scheme for fully-automated abdominal multi-organ CT segmentation using transfer learning. Convolutional neural network with 3D U-net is a strong tool to achieve volumetric image segmentation. The drawback of 3D U-net is that its judgement is based only on the local volumetric data, which leads to errors in categorization. To overcome this problem we propose 3D U-JAPA-net, which uses not only the raw CT data but also the probabilistic atlas of organs to reflect the information on organ locations. In the first phase of training, a 3D U-net is trained based on the conventional method. In the second phase, expert 3D U-nets for each organ are trained intensely around the locations of the organs, where the initial weights are transferred from the 3D U-net obtained in the first phase. Segmentation in the proposed method consists of three phases. First rough locations of organs are estimated by probabilistic atlas. Second, the trained expert 3D U-nets are applied in the focused locations. Post-process to remove debris is applied in the final phase. We test the performance of the proposed method with 47 CT data and it achieves higher DICE scores than the conventional 2D U-net and 3D U-net. Also, a positive effect of transfer learning is confirmed by comparing the proposed method with that without transfer learning." @default.
- W2891994532 created "2018-09-27" @default.
- W2891994532 creator A5038718629 @default.
- W2891994532 creator A5058359227 @default.
- W2891994532 creator A5060004810 @default.
- W2891994532 date "2018-01-01" @default.
- W2891994532 modified "2023-10-18" @default.
- W2891994532 title "3D U-JAPA-Net: Mixture of Convolutional Networks for Abdominal Multi-organ CT Segmentation" @default.
- W2891994532 cites W1498436455 @default.
- W2891994532 cites W1901129140 @default.
- W2891994532 cites W1901606657 @default.
- W2891994532 cites W1903029394 @default.
- W2891994532 cites W2104276184 @default.
- W2891994532 cites W2109759912 @default.
- W2891994532 cites W2143781397 @default.
- W2891994532 cites W2150884987 @default.
- W2891994532 cites W2256679588 @default.
- W2891994532 cites W2464708700 @default.
- W2891994532 doi "https://doi.org/10.1007/978-3-030-00937-3_49" @default.
- W2891994532 hasPublicationYear "2018" @default.
- W2891994532 type Work @default.
- W2891994532 sameAs 2891994532 @default.
- W2891994532 citedByCount "20" @default.
- W2891994532 countsByYear W28919945322019 @default.
- W2891994532 countsByYear W28919945322020 @default.
- W2891994532 countsByYear W28919945322021 @default.
- W2891994532 countsByYear W28919945322022 @default.
- W2891994532 countsByYear W28919945322023 @default.
- W2891994532 crossrefType "book-chapter" @default.
- W2891994532 hasAuthorship W2891994532A5038718629 @default.
- W2891994532 hasAuthorship W2891994532A5058359227 @default.
- W2891994532 hasAuthorship W2891994532A5060004810 @default.
- W2891994532 hasConcept C108583219 @default.
- W2891994532 hasConcept C150899416 @default.
- W2891994532 hasConcept C153180895 @default.
- W2891994532 hasConcept C154945302 @default.
- W2891994532 hasConcept C41008148 @default.
- W2891994532 hasConcept C81363708 @default.
- W2891994532 hasConcept C89600930 @default.
- W2891994532 hasConceptScore W2891994532C108583219 @default.
- W2891994532 hasConceptScore W2891994532C150899416 @default.
- W2891994532 hasConceptScore W2891994532C153180895 @default.
- W2891994532 hasConceptScore W2891994532C154945302 @default.
- W2891994532 hasConceptScore W2891994532C41008148 @default.
- W2891994532 hasConceptScore W2891994532C81363708 @default.
- W2891994532 hasConceptScore W2891994532C89600930 @default.
- W2891994532 hasLocation W28919945321 @default.
- W2891994532 hasOpenAccess W2891994532 @default.
- W2891994532 hasPrimaryLocation W28919945321 @default.
- W2891994532 hasRelatedWork W2951211570 @default.
- W2891994532 hasRelatedWork W2996856019 @default.
- W2891994532 hasRelatedWork W3012459282 @default.
- W2891994532 hasRelatedWork W3018421652 @default.
- W2891994532 hasRelatedWork W3091976719 @default.
- W2891994532 hasRelatedWork W3192840557 @default.
- W2891994532 hasRelatedWork W4220996320 @default.
- W2891994532 hasRelatedWork W4285149559 @default.
- W2891994532 hasRelatedWork W4287009405 @default.
- W2891994532 hasRelatedWork W4312417841 @default.
- W2891994532 isParatext "false" @default.
- W2891994532 isRetracted "false" @default.
- W2891994532 magId "2891994532" @default.
- W2891994532 workType "book-chapter" @default.