Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891995560> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2891995560 abstract "This study analyzes the performance of four machine learning algorithms with different perspectives for defining data files, in the prediction of university student desertion. The algorithms used were: Random Forest, Neural Networks, Support Vector Machines and Logistic Regression. It was found that the Random Forest algorithm with 10 variables randomly sampled as candidates in each division, was the best for predicting dropouts and that the ideal perspective for training the algorithm is to use information on all semesters that students take within a given period of time, using a classification variable that defines the non-dropout as the graduated student. In a first validation sample, this approach correctly predicted 91% of dropouts, with a sensitivity of 87%." @default.
- W2891995560 created "2018-09-27" @default.
- W2891995560 creator A5029935285 @default.
- W2891995560 creator A5038330155 @default.
- W2891995560 creator A5053409194 @default.
- W2891995560 creator A5063874490 @default.
- W2891995560 creator A5078489804 @default.
- W2891995560 date "2018-07-01" @default.
- W2891995560 modified "2023-10-16" @default.
- W2891995560 title "Perspectives to Predict Dropout in University Students with Machine Learning" @default.
- W2891995560 cites W1970881937 @default.
- W2891995560 cites W2156311952 @default.
- W2891995560 cites W2505736237 @default.
- W2891995560 cites W2525523713 @default.
- W2891995560 cites W2569690883 @default.
- W2891995560 cites W2626747875 @default.
- W2891995560 doi "https://doi.org/10.1109/iwobi.2018.8464191" @default.
- W2891995560 hasPublicationYear "2018" @default.
- W2891995560 type Work @default.
- W2891995560 sameAs 2891995560 @default.
- W2891995560 citedByCount "16" @default.
- W2891995560 countsByYear W28919955602019 @default.
- W2891995560 countsByYear W28919955602020 @default.
- W2891995560 countsByYear W28919955602021 @default.
- W2891995560 countsByYear W28919955602022 @default.
- W2891995560 countsByYear W28919955602023 @default.
- W2891995560 crossrefType "proceedings-article" @default.
- W2891995560 hasAuthorship W2891995560A5029935285 @default.
- W2891995560 hasAuthorship W2891995560A5038330155 @default.
- W2891995560 hasAuthorship W2891995560A5053409194 @default.
- W2891995560 hasAuthorship W2891995560A5063874490 @default.
- W2891995560 hasAuthorship W2891995560A5078489804 @default.
- W2891995560 hasConcept C119857082 @default.
- W2891995560 hasConcept C12267149 @default.
- W2891995560 hasConcept C12713177 @default.
- W2891995560 hasConcept C134306372 @default.
- W2891995560 hasConcept C151956035 @default.
- W2891995560 hasConcept C154945302 @default.
- W2891995560 hasConcept C169258074 @default.
- W2891995560 hasConcept C182365436 @default.
- W2891995560 hasConcept C185592680 @default.
- W2891995560 hasConcept C198531522 @default.
- W2891995560 hasConcept C2776145597 @default.
- W2891995560 hasConcept C2777598771 @default.
- W2891995560 hasConcept C2777648619 @default.
- W2891995560 hasConcept C2986087404 @default.
- W2891995560 hasConcept C33923547 @default.
- W2891995560 hasConcept C41008148 @default.
- W2891995560 hasConcept C43617362 @default.
- W2891995560 hasConcept C49774154 @default.
- W2891995560 hasConcept C50644808 @default.
- W2891995560 hasConceptScore W2891995560C119857082 @default.
- W2891995560 hasConceptScore W2891995560C12267149 @default.
- W2891995560 hasConceptScore W2891995560C12713177 @default.
- W2891995560 hasConceptScore W2891995560C134306372 @default.
- W2891995560 hasConceptScore W2891995560C151956035 @default.
- W2891995560 hasConceptScore W2891995560C154945302 @default.
- W2891995560 hasConceptScore W2891995560C169258074 @default.
- W2891995560 hasConceptScore W2891995560C182365436 @default.
- W2891995560 hasConceptScore W2891995560C185592680 @default.
- W2891995560 hasConceptScore W2891995560C198531522 @default.
- W2891995560 hasConceptScore W2891995560C2776145597 @default.
- W2891995560 hasConceptScore W2891995560C2777598771 @default.
- W2891995560 hasConceptScore W2891995560C2777648619 @default.
- W2891995560 hasConceptScore W2891995560C2986087404 @default.
- W2891995560 hasConceptScore W2891995560C33923547 @default.
- W2891995560 hasConceptScore W2891995560C41008148 @default.
- W2891995560 hasConceptScore W2891995560C43617362 @default.
- W2891995560 hasConceptScore W2891995560C49774154 @default.
- W2891995560 hasConceptScore W2891995560C50644808 @default.
- W2891995560 hasLocation W28919955601 @default.
- W2891995560 hasOpenAccess W2891995560 @default.
- W2891995560 hasPrimaryLocation W28919955601 @default.
- W2891995560 hasRelatedWork W2507965868 @default.
- W2891995560 hasRelatedWork W2735315095 @default.
- W2891995560 hasRelatedWork W2803859905 @default.
- W2891995560 hasRelatedWork W2891995560 @default.
- W2891995560 hasRelatedWork W3134571208 @default.
- W2891995560 hasRelatedWork W3154140201 @default.
- W2891995560 hasRelatedWork W3195168932 @default.
- W2891995560 hasRelatedWork W4321636153 @default.
- W2891995560 hasRelatedWork W4383535405 @default.
- W2891995560 hasRelatedWork W4384520063 @default.
- W2891995560 isParatext "false" @default.
- W2891995560 isRetracted "false" @default.
- W2891995560 magId "2891995560" @default.
- W2891995560 workType "article" @default.