Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891997914> ?p ?o ?g. }
- W2891997914 endingPage "124" @default.
- W2891997914 startingPage "109" @default.
- W2891997914 abstract "The increasing availability of Big Biomedical Data is leading to large research data samples collected over long periods of time. We propose the analysis of the kinematics of data probability distributions over time towards the characterization of data temporal variability. First, we propose a kinematic model based on the estimation of a continuous data temporal trajectory, using Functional Data Analysis over the embedding of a non-parametric statistical manifold which points represent data temporal batches, the Information Geometric Temporal (IGT) plot. This model allows measuring the velocity and acceleration of data changes. Next, we propose a coordinate-free method to characterize the oriented seasonality of data based on the parallelism of lagged velocity vectors of the data trajectory throughout the IGT space, the Auto-Parallelism of Velocity Vectors (APVV) and APVVmap. Finally, we automatically explain the maximum variance components of the IGT space coordinates by means of correlating data points with known temporal factors from the domain application. Methods are evaluated on the US National Hospital Discharge Survey open dataset, consisting of 3,25M hospital discharges between 2000 and 2010. Seasonal and abrupt behaviours were present on the estimated multivariate and univariate data trajectories. The kinematic analysis revealed seasonal effects and punctual increments in data celerity, the latter mainly related to abrupt changes in coding. The APVV and APVVmap revealed oriented seasonal changes on data trajectories. For most variables, their distributions tended to change to the same direction at a 12-month period, with a peak of change of directionality at mid and end of the year. Diagnosis and Procedure codes also included a 9-month periodic component. Kinematics and APVV methods were able to detect seasonal effects on extreme temporal subgrouped data, such as in Procedure code, where Fourier and autocorrelation methods were not able to. The automated explanation of IGT space coordinates was consistent with the results provided by the kinematic and seasonal analysis. Coordinates received different meanings according to the trajectory trend, seasonality and abrupt changes. Treating data as a particle moving over time through a multidimensional probabilistic space and studying the kinematics of its trajectory has turned out to a new temporal variability methodology. Its results on the NHDS were aligned with the dataset and population descriptions found in the literature, contributing with a novel temporal variability characterization. We have demonstrated that the APVV and APVVmat are an appropriate tool for the coordinate-free and oriented analysis of trajectories or complex multivariate signals. The proposed methods comprise an exploratory methodology for the characterization of data temporal variability, what may be useful for a reliable reuse of Big Biomedical Data repositories acquired over long periods of time." @default.
- W2891997914 created "2018-09-27" @default.
- W2891997914 creator A5026025555 @default.
- W2891997914 creator A5071504728 @default.
- W2891997914 date "2018-11-01" @default.
- W2891997914 modified "2023-10-05" @default.
- W2891997914 title "Kinematics of Big Biomedical Data to characterize temporal variability and seasonality of data repositories: Functional Data Analysis of data temporal evolution over non-parametric statistical manifolds" @default.
- W2891997914 cites W1541250240 @default.
- W2891997914 cites W1567491469 @default.
- W2891997914 cites W1965555277 @default.
- W2891997914 cites W1980912809 @default.
- W2891997914 cites W1993436046 @default.
- W2891997914 cites W1994808296 @default.
- W2891997914 cites W1994876586 @default.
- W2891997914 cites W2004291985 @default.
- W2891997914 cites W2031500001 @default.
- W2891997914 cites W2035005585 @default.
- W2891997914 cites W2076736649 @default.
- W2891997914 cites W2085575998 @default.
- W2891997914 cites W2096192437 @default.
- W2891997914 cites W2108258145 @default.
- W2891997914 cites W2118020555 @default.
- W2891997914 cites W2118383892 @default.
- W2891997914 cites W2132481658 @default.
- W2891997914 cites W2134256069 @default.
- W2891997914 cites W2138752966 @default.
- W2891997914 cites W2146950091 @default.
- W2891997914 cites W2158939484 @default.
- W2891997914 cites W2166549811 @default.
- W2891997914 cites W2169767637 @default.
- W2891997914 cites W2176180568 @default.
- W2891997914 cites W2229672661 @default.
- W2891997914 cites W2341770358 @default.
- W2891997914 cites W2518786827 @default.
- W2891997914 cites W2603756957 @default.
- W2891997914 cites W2747485808 @default.
- W2891997914 cites W2765108097 @default.
- W2891997914 doi "https://doi.org/10.1016/j.ijmedinf.2018.09.015" @default.
- W2891997914 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30342679" @default.
- W2891997914 hasPublicationYear "2018" @default.
- W2891997914 type Work @default.
- W2891997914 sameAs 2891997914 @default.
- W2891997914 citedByCount "21" @default.
- W2891997914 countsByYear W28919979142019 @default.
- W2891997914 countsByYear W28919979142020 @default.
- W2891997914 countsByYear W28919979142021 @default.
- W2891997914 countsByYear W28919979142022 @default.
- W2891997914 countsByYear W28919979142023 @default.
- W2891997914 crossrefType "journal-article" @default.
- W2891997914 hasAuthorship W2891997914A5026025555 @default.
- W2891997914 hasAuthorship W2891997914A5071504728 @default.
- W2891997914 hasConcept C102366305 @default.
- W2891997914 hasConcept C105795698 @default.
- W2891997914 hasConcept C117251300 @default.
- W2891997914 hasConcept C121332964 @default.
- W2891997914 hasConcept C124101348 @default.
- W2891997914 hasConcept C1276947 @default.
- W2891997914 hasConcept C13662910 @default.
- W2891997914 hasConcept C151406439 @default.
- W2891997914 hasConcept C154945302 @default.
- W2891997914 hasConcept C161584116 @default.
- W2891997914 hasConcept C199163554 @default.
- W2891997914 hasConcept C21080849 @default.
- W2891997914 hasConcept C33923547 @default.
- W2891997914 hasConcept C39920418 @default.
- W2891997914 hasConcept C41008148 @default.
- W2891997914 hasConcept C51820054 @default.
- W2891997914 hasConcept C74650414 @default.
- W2891997914 hasConceptScore W2891997914C102366305 @default.
- W2891997914 hasConceptScore W2891997914C105795698 @default.
- W2891997914 hasConceptScore W2891997914C117251300 @default.
- W2891997914 hasConceptScore W2891997914C121332964 @default.
- W2891997914 hasConceptScore W2891997914C124101348 @default.
- W2891997914 hasConceptScore W2891997914C1276947 @default.
- W2891997914 hasConceptScore W2891997914C13662910 @default.
- W2891997914 hasConceptScore W2891997914C151406439 @default.
- W2891997914 hasConceptScore W2891997914C154945302 @default.
- W2891997914 hasConceptScore W2891997914C161584116 @default.
- W2891997914 hasConceptScore W2891997914C199163554 @default.
- W2891997914 hasConceptScore W2891997914C21080849 @default.
- W2891997914 hasConceptScore W2891997914C33923547 @default.
- W2891997914 hasConceptScore W2891997914C39920418 @default.
- W2891997914 hasConceptScore W2891997914C41008148 @default.
- W2891997914 hasConceptScore W2891997914C51820054 @default.
- W2891997914 hasConceptScore W2891997914C74650414 @default.
- W2891997914 hasLocation W28919979141 @default.
- W2891997914 hasLocation W28919979142 @default.
- W2891997914 hasOpenAccess W2891997914 @default.
- W2891997914 hasPrimaryLocation W28919979141 @default.
- W2891997914 hasRelatedWork W1982864826 @default.
- W2891997914 hasRelatedWork W2048159935 @default.
- W2891997914 hasRelatedWork W2067042813 @default.
- W2891997914 hasRelatedWork W2070074071 @default.
- W2891997914 hasRelatedWork W2092363769 @default.
- W2891997914 hasRelatedWork W2354804553 @default.
- W2891997914 hasRelatedWork W2622157825 @default.
- W2891997914 hasRelatedWork W3037570452 @default.
- W2891997914 hasRelatedWork W4220961233 @default.