Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891999340> ?p ?o ?g. }
- W2891999340 endingPage "540" @default.
- W2891999340 startingPage "529" @default.
- W2891999340 abstract "Abstract Day-ahead electricity price forecasting (DAEPF) plays a very important role in the decision-making optimization of electricity market participants, the dispatch control of independent system operators (ISOs) and the strategy formulation of energy trading. Unified modeling that only fits a single mapping relation between the historical data and future data usually produces larger errors because the different fluctuation patterns in electricity price data show different mapping relations. A daily pattern prediction (DPP) based classification modeling approach for DAEPF is proposed to solve this problem. The basic idea is that first recognize the price pattern of the next day from the “rough” day-ahead forecasting results provided by conventional forecasting methods and then perform classification modeling to further improve the forecasting accuracy through building a specific forecasting model for each pattern. The proposed approach consists of four steps. First, K-means is utilized to group all the historical daily electricity price curves into several clusters in order to assign each daily curve a pattern label for the training of the following daily pattern recognition (DPR) model and classification modeling. Second, a DPP model is proposed to recognize the price pattern of the next day from the forecasting results provided by multiple conventional forecasting methods. A weighted voting mechanism (WVM) method is proposed in this step to combine multiple day-ahead pattern predictions to obtain a more accurate DPP result. Third, the classification forecasting model of each different daily pattern can be established according to the clustering results in step 1. Fourth, the credibility of DPP result is checked to eventually determine whether the proposed classification DAEPF modeling approach can be adopted or not. A case study using the real electricity price data from the PJM market indicates that the proposed approach presents a better performance than unified modeling for a certain daily pattern whose DPP results show high reliability and accuracy." @default.
- W2891999340 created "2018-09-27" @default.
- W2891999340 creator A5015484149 @default.
- W2891999340 creator A5016740616 @default.
- W2891999340 creator A5017196977 @default.
- W2891999340 creator A5021855763 @default.
- W2891999340 creator A5065382518 @default.
- W2891999340 creator A5086529957 @default.
- W2891999340 creator A5088560163 @default.
- W2891999340 date "2019-02-01" @default.
- W2891999340 modified "2023-10-17" @default.
- W2891999340 title "Daily pattern prediction based classification modeling approach for day-ahead electricity price forecasting" @default.
- W2891999340 cites W1185746543 @default.
- W2891999340 cites W1977200004 @default.
- W2891999340 cites W1978702499 @default.
- W2891999340 cites W2003608156 @default.
- W2891999340 cites W2011394589 @default.
- W2891999340 cites W2013872183 @default.
- W2891999340 cites W2018936073 @default.
- W2891999340 cites W2021162664 @default.
- W2891999340 cites W2027536868 @default.
- W2891999340 cites W2052945018 @default.
- W2891999340 cites W2054068155 @default.
- W2891999340 cites W2054458966 @default.
- W2891999340 cites W2071884028 @default.
- W2891999340 cites W2074457964 @default.
- W2891999340 cites W2077362638 @default.
- W2891999340 cites W2086371794 @default.
- W2891999340 cites W2096869115 @default.
- W2891999340 cites W2116174583 @default.
- W2891999340 cites W2125747076 @default.
- W2891999340 cites W2126831543 @default.
- W2891999340 cites W2143836457 @default.
- W2891999340 cites W2155482907 @default.
- W2891999340 cites W2167188817 @default.
- W2891999340 cites W2181574536 @default.
- W2891999340 cites W2268377817 @default.
- W2891999340 cites W2291164860 @default.
- W2891999340 cites W2292129691 @default.
- W2891999340 cites W2315598830 @default.
- W2891999340 cites W2381525987 @default.
- W2891999340 cites W2485905548 @default.
- W2891999340 cites W2566496077 @default.
- W2891999340 cites W2589489991 @default.
- W2891999340 cites W2606631653 @default.
- W2891999340 cites W2768030774 @default.
- W2891999340 cites W2771369270 @default.
- W2891999340 cites W2776400462 @default.
- W2891999340 cites W2777155931 @default.
- W2891999340 cites W2782578206 @default.
- W2891999340 cites W2795338198 @default.
- W2891999340 cites W2797889343 @default.
- W2891999340 cites W2807818015 @default.
- W2891999340 cites W4230209322 @default.
- W2891999340 cites W4244166797 @default.
- W2891999340 doi "https://doi.org/10.1016/j.ijepes.2018.08.039" @default.
- W2891999340 hasPublicationYear "2019" @default.
- W2891999340 type Work @default.
- W2891999340 sameAs 2891999340 @default.
- W2891999340 citedByCount "91" @default.
- W2891999340 countsByYear W28919993402018 @default.
- W2891999340 countsByYear W28919993402019 @default.
- W2891999340 countsByYear W28919993402020 @default.
- W2891999340 countsByYear W28919993402021 @default.
- W2891999340 countsByYear W28919993402022 @default.
- W2891999340 countsByYear W28919993402023 @default.
- W2891999340 crossrefType "journal-article" @default.
- W2891999340 hasAuthorship W2891999340A5015484149 @default.
- W2891999340 hasAuthorship W2891999340A5016740616 @default.
- W2891999340 hasAuthorship W2891999340A5017196977 @default.
- W2891999340 hasAuthorship W2891999340A5021855763 @default.
- W2891999340 hasAuthorship W2891999340A5065382518 @default.
- W2891999340 hasAuthorship W2891999340A5086529957 @default.
- W2891999340 hasAuthorship W2891999340A5088560163 @default.
- W2891999340 hasConcept C119599485 @default.
- W2891999340 hasConcept C119857082 @default.
- W2891999340 hasConcept C127413603 @default.
- W2891999340 hasConcept C149782125 @default.
- W2891999340 hasConcept C154945302 @default.
- W2891999340 hasConcept C162324750 @default.
- W2891999340 hasConcept C206658404 @default.
- W2891999340 hasConcept C2781104810 @default.
- W2891999340 hasConcept C2983129042 @default.
- W2891999340 hasConcept C41008148 @default.
- W2891999340 hasConcept C45804977 @default.
- W2891999340 hasConceptScore W2891999340C119599485 @default.
- W2891999340 hasConceptScore W2891999340C119857082 @default.
- W2891999340 hasConceptScore W2891999340C127413603 @default.
- W2891999340 hasConceptScore W2891999340C149782125 @default.
- W2891999340 hasConceptScore W2891999340C154945302 @default.
- W2891999340 hasConceptScore W2891999340C162324750 @default.
- W2891999340 hasConceptScore W2891999340C206658404 @default.
- W2891999340 hasConceptScore W2891999340C2781104810 @default.
- W2891999340 hasConceptScore W2891999340C2983129042 @default.
- W2891999340 hasConceptScore W2891999340C41008148 @default.
- W2891999340 hasConceptScore W2891999340C45804977 @default.
- W2891999340 hasFunder F4320321001 @default.
- W2891999340 hasFunder F4320327677 @default.