Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892004004> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2892004004 abstract "Convolution Neural Networks (CNN) have achieved undisputed success in many practical applications, such as image classification, face detection, and speech recognition. As we all know, FPGA-based CNN prediction is more efficient than GPU-based schemes, especially in terms of power consumption. In addition, OpenCL-based high-level synthesis tools in FPGA is widely utilized due to the fast verification and implementation flows. In this paper, we propose an FPGA accelerator with a scalable architecture of deeply pipelined OpenCL kernels. The design is verified by implementing three representative large-scale CNNs, AlexNet, VGG-16 and ResNet-50 on Altera OpenCL DE5-Net FPGA board. Our design has achieved a peak performance of 141 GOPS for convolution operation, and 103 GOPS for the entire VGG-16 network that performs ImageNet classification on DE5-Net board." @default.
- W2892004004 created "2018-09-27" @default.
- W2892004004 creator A5044562349 @default.
- W2892004004 creator A5046454314 @default.
- W2892004004 creator A5076711942 @default.
- W2892004004 creator A5081219556 @default.
- W2892004004 date "2018-01-01" @default.
- W2892004004 modified "2023-09-26" @default.
- W2892004004 title "A Scalable FPGA Accelerator for Convolutional Neural Networks" @default.
- W2892004004 cites W2094756095 @default.
- W2892004004 cites W2155273149 @default.
- W2892004004 cites W2194775991 @default.
- W2892004004 cites W2276486856 @default.
- W2892004004 cites W2294282016 @default.
- W2892004004 cites W2785456876 @default.
- W2892004004 doi "https://doi.org/10.1007/978-981-13-2423-9_1" @default.
- W2892004004 hasPublicationYear "2018" @default.
- W2892004004 type Work @default.
- W2892004004 sameAs 2892004004 @default.
- W2892004004 citedByCount "0" @default.
- W2892004004 crossrefType "book-chapter" @default.
- W2892004004 hasAuthorship W2892004004A5044562349 @default.
- W2892004004 hasAuthorship W2892004004A5046454314 @default.
- W2892004004 hasAuthorship W2892004004A5076711942 @default.
- W2892004004 hasAuthorship W2892004004A5081219556 @default.
- W2892004004 hasConcept C111919701 @default.
- W2892004004 hasConcept C114614502 @default.
- W2892004004 hasConcept C118524514 @default.
- W2892004004 hasConcept C121332964 @default.
- W2892004004 hasConcept C149635348 @default.
- W2892004004 hasConcept C154945302 @default.
- W2892004004 hasConcept C173608175 @default.
- W2892004004 hasConcept C2778755073 @default.
- W2892004004 hasConcept C2944601119 @default.
- W2892004004 hasConcept C33923547 @default.
- W2892004004 hasConcept C41008148 @default.
- W2892004004 hasConcept C42935608 @default.
- W2892004004 hasConcept C45347329 @default.
- W2892004004 hasConcept C48044578 @default.
- W2892004004 hasConcept C50644808 @default.
- W2892004004 hasConcept C62520636 @default.
- W2892004004 hasConcept C74193536 @default.
- W2892004004 hasConcept C81363708 @default.
- W2892004004 hasConcept C9390403 @default.
- W2892004004 hasConceptScore W2892004004C111919701 @default.
- W2892004004 hasConceptScore W2892004004C114614502 @default.
- W2892004004 hasConceptScore W2892004004C118524514 @default.
- W2892004004 hasConceptScore W2892004004C121332964 @default.
- W2892004004 hasConceptScore W2892004004C149635348 @default.
- W2892004004 hasConceptScore W2892004004C154945302 @default.
- W2892004004 hasConceptScore W2892004004C173608175 @default.
- W2892004004 hasConceptScore W2892004004C2778755073 @default.
- W2892004004 hasConceptScore W2892004004C2944601119 @default.
- W2892004004 hasConceptScore W2892004004C33923547 @default.
- W2892004004 hasConceptScore W2892004004C41008148 @default.
- W2892004004 hasConceptScore W2892004004C42935608 @default.
- W2892004004 hasConceptScore W2892004004C45347329 @default.
- W2892004004 hasConceptScore W2892004004C48044578 @default.
- W2892004004 hasConceptScore W2892004004C50644808 @default.
- W2892004004 hasConceptScore W2892004004C62520636 @default.
- W2892004004 hasConceptScore W2892004004C74193536 @default.
- W2892004004 hasConceptScore W2892004004C81363708 @default.
- W2892004004 hasConceptScore W2892004004C9390403 @default.
- W2892004004 hasLocation W28920040041 @default.
- W2892004004 hasOpenAccess W2892004004 @default.
- W2892004004 hasPrimaryLocation W28920040041 @default.
- W2892004004 hasRelatedWork W2276486856 @default.
- W2892004004 hasRelatedWork W2466675884 @default.
- W2892004004 hasRelatedWork W2520083297 @default.
- W2892004004 hasRelatedWork W2523838129 @default.
- W2892004004 hasRelatedWork W2552194367 @default.
- W2892004004 hasRelatedWork W2756829667 @default.
- W2892004004 hasRelatedWork W2760477357 @default.
- W2892004004 hasRelatedWork W2785456876 @default.
- W2892004004 hasRelatedWork W2896983500 @default.
- W2892004004 hasRelatedWork W2900316824 @default.
- W2892004004 hasRelatedWork W2921445017 @default.
- W2892004004 hasRelatedWork W2949649078 @default.
- W2892004004 hasRelatedWork W2989631846 @default.
- W2892004004 hasRelatedWork W3026022605 @default.
- W2892004004 hasRelatedWork W3033155721 @default.
- W2892004004 hasRelatedWork W3108192785 @default.
- W2892004004 hasRelatedWork W3111817129 @default.
- W2892004004 hasRelatedWork W3159273459 @default.
- W2892004004 hasRelatedWork W3160493505 @default.
- W2892004004 hasRelatedWork W3197391509 @default.
- W2892004004 isParatext "false" @default.
- W2892004004 isRetracted "false" @default.
- W2892004004 magId "2892004004" @default.
- W2892004004 workType "book-chapter" @default.