Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892004704> ?p ?o ?g. }
- W2892004704 endingPage "1125" @default.
- W2892004704 startingPage "1108" @default.
- W2892004704 abstract "Owing to the complexity and uncertainty of wind speed, accurate wind speed prediction has become a highly anticipated and challenging problem in recent years. Researchers have conducted numerous studies on wind speed prediction theory and practice; however, research on multi-step wind speed prediction remains scarce, which hinders further development in this area. To improve upon the accuracy and stability of multi-step wind speed prediction, this paper proposes a combination model based on a data preprocessing strategy, an improved optimization model, a no negative constraint theory, and several single prediction models. To improve upon forecasting performance, an improved water cycle algorithm based on a quasi-Newton algorithm is proposed to optimize the weight coefficients of the single models. In the empirical research, 10-min and 30-min wind speed data from Shandong Province in China, collected for case studies, were used to assess the comprehensive performance of the proposed combination model. Finally, we used 10-fold cross-validation and multiple error criteria to evaluate the comprehensive performance of the proposed combination model. The simulation results indicate that (a) the quasi-Newton algorithm can effectively increase the diversity of the water cycle algorithm particles, resulting in improved water cycle algorithm optimization performance; (b) the combination model exhibits superior predictive performance to a single model by taking advantage of each single model; and (c) the proposed combination model can effectively improve multi-step wind speed prediction results." @default.
- W2892004704 created "2018-09-27" @default.
- W2892004704 creator A5032764121 @default.
- W2892004704 creator A5086464512 @default.
- W2892004704 date "2018-11-01" @default.
- W2892004704 modified "2023-10-17" @default.
- W2892004704 title "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm" @default.
- W2892004704 cites W1185746543 @default.
- W2892004704 cites W1895396664 @default.
- W2892004704 cites W1973048907 @default.
- W2892004704 cites W1984478203 @default.
- W2892004704 cites W1993601879 @default.
- W2892004704 cites W1994170512 @default.
- W2892004704 cites W2003809942 @default.
- W2892004704 cites W2006558836 @default.
- W2892004704 cites W2016752668 @default.
- W2892004704 cites W2021826571 @default.
- W2892004704 cites W2026668451 @default.
- W2892004704 cites W2039238531 @default.
- W2892004704 cites W2039306928 @default.
- W2892004704 cites W2041829488 @default.
- W2892004704 cites W2051502925 @default.
- W2892004704 cites W2052025260 @default.
- W2892004704 cites W2058504886 @default.
- W2892004704 cites W2058922249 @default.
- W2892004704 cites W2059698575 @default.
- W2892004704 cites W2074715647 @default.
- W2892004704 cites W2083620425 @default.
- W2892004704 cites W2096673585 @default.
- W2892004704 cites W2103111465 @default.
- W2892004704 cites W2110485445 @default.
- W2892004704 cites W2113522414 @default.
- W2892004704 cites W2120390927 @default.
- W2892004704 cites W2120912971 @default.
- W2892004704 cites W2140910096 @default.
- W2892004704 cites W2142809749 @default.
- W2892004704 cites W2147094811 @default.
- W2892004704 cites W2222497113 @default.
- W2892004704 cites W2254535312 @default.
- W2892004704 cites W2280029926 @default.
- W2892004704 cites W2287279778 @default.
- W2892004704 cites W2468900667 @default.
- W2892004704 cites W2509426069 @default.
- W2892004704 cites W2592540809 @default.
- W2892004704 cites W4292671038 @default.
- W2892004704 doi "https://doi.org/10.1016/j.apenergy.2018.09.037" @default.
- W2892004704 hasPublicationYear "2018" @default.
- W2892004704 type Work @default.
- W2892004704 sameAs 2892004704 @default.
- W2892004704 citedByCount "61" @default.
- W2892004704 countsByYear W28920047042019 @default.
- W2892004704 countsByYear W28920047042020 @default.
- W2892004704 countsByYear W28920047042021 @default.
- W2892004704 countsByYear W28920047042022 @default.
- W2892004704 countsByYear W28920047042023 @default.
- W2892004704 crossrefType "journal-article" @default.
- W2892004704 hasAuthorship W2892004704A5032764121 @default.
- W2892004704 hasAuthorship W2892004704A5086464512 @default.
- W2892004704 hasConcept C10551718 @default.
- W2892004704 hasConcept C112972136 @default.
- W2892004704 hasConcept C11413529 @default.
- W2892004704 hasConcept C119857082 @default.
- W2892004704 hasConcept C121332964 @default.
- W2892004704 hasConcept C126255220 @default.
- W2892004704 hasConcept C153294291 @default.
- W2892004704 hasConcept C154945302 @default.
- W2892004704 hasConcept C161067210 @default.
- W2892004704 hasConcept C33923547 @default.
- W2892004704 hasConcept C34736171 @default.
- W2892004704 hasConcept C41008148 @default.
- W2892004704 hasConcept C50644808 @default.
- W2892004704 hasConceptScore W2892004704C10551718 @default.
- W2892004704 hasConceptScore W2892004704C112972136 @default.
- W2892004704 hasConceptScore W2892004704C11413529 @default.
- W2892004704 hasConceptScore W2892004704C119857082 @default.
- W2892004704 hasConceptScore W2892004704C121332964 @default.
- W2892004704 hasConceptScore W2892004704C126255220 @default.
- W2892004704 hasConceptScore W2892004704C153294291 @default.
- W2892004704 hasConceptScore W2892004704C154945302 @default.
- W2892004704 hasConceptScore W2892004704C161067210 @default.
- W2892004704 hasConceptScore W2892004704C33923547 @default.
- W2892004704 hasConceptScore W2892004704C34736171 @default.
- W2892004704 hasConceptScore W2892004704C41008148 @default.
- W2892004704 hasConceptScore W2892004704C50644808 @default.
- W2892004704 hasLocation W28920047041 @default.
- W2892004704 hasOpenAccess W2892004704 @default.
- W2892004704 hasPrimaryLocation W28920047041 @default.
- W2892004704 hasRelatedWork W1986684738 @default.
- W2892004704 hasRelatedWork W2093274818 @default.
- W2892004704 hasRelatedWork W2314172987 @default.
- W2892004704 hasRelatedWork W2382928216 @default.
- W2892004704 hasRelatedWork W2517235427 @default.
- W2892004704 hasRelatedWork W2735953229 @default.
- W2892004704 hasRelatedWork W3194157648 @default.
- W2892004704 hasRelatedWork W4316171032 @default.
- W2892004704 hasRelatedWork W1965750824 @default.
- W2892004704 hasRelatedWork W3111893788 @default.
- W2892004704 hasVolume "230" @default.