Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892005476> ?p ?o ?g. }
- W2892005476 endingPage "115006" @default.
- W2892005476 startingPage "115006" @default.
- W2892005476 abstract "In this paper, we propose a method to estimate normal vectors based on neighborhood clustering segmentation, which improves the accuracy of normal-vector estimation for sharp features. The proposed method adjusts the neighborhood through Gauss mapping and clustering segmentation to solve the problem of inaccurate estimation of the normal vector in the sharp-feature region. First, the normal vectors of the point cloud are initially estimated by principal component analysis (PCA). Next, the neighborhood of points from different patches, which are close to the sharp feature, are mapped to a unit Gauss sphere, and the point cloud on the unit sphere is clustered. All points of the cluster belonging to the target point are divided into sub-neighborhoods. Finally, with this sub-neighborhood as input, the normal vector of the point is accurately calculated by PCA. Experiments show that, even for noise and non-uniform sampling, the method proposed herein outperforms previous methods in terms of quality of results and running time." @default.
- W2892005476 created "2018-09-27" @default.
- W2892005476 creator A5015041976 @default.
- W2892005476 creator A5035556269 @default.
- W2892005476 creator A5076964360 @default.
- W2892005476 date "2018-10-05" @default.
- W2892005476 modified "2023-09-24" @default.
- W2892005476 title "Normal estimation of point cloud based on sub-neighborhood clustering" @default.
- W2892005476 cites W1965722128 @default.
- W2892005476 cites W1971306954 @default.
- W2892005476 cites W19756496 @default.
- W2892005476 cites W1986465719 @default.
- W2892005476 cites W1987549295 @default.
- W2892005476 cites W2001424961 @default.
- W2892005476 cites W2001856064 @default.
- W2892005476 cites W2010705029 @default.
- W2892005476 cites W2011733965 @default.
- W2892005476 cites W2025913160 @default.
- W2892005476 cites W2029041800 @default.
- W2892005476 cites W2031361807 @default.
- W2892005476 cites W2043228434 @default.
- W2892005476 cites W2052790699 @default.
- W2892005476 cites W2057658876 @default.
- W2892005476 cites W2058776828 @default.
- W2892005476 cites W2081750044 @default.
- W2892005476 cites W2085432534 @default.
- W2892005476 cites W2100816864 @default.
- W2892005476 cites W2128728535 @default.
- W2892005476 cites W2138664273 @default.
- W2892005476 cites W2165232124 @default.
- W2892005476 cites W2165558283 @default.
- W2892005476 cites W2169318829 @default.
- W2892005476 cites W2253626339 @default.
- W2892005476 cites W2292438012 @default.
- W2892005476 cites W2613109975 @default.
- W2892005476 cites W2620078895 @default.
- W2892005476 cites W2735360945 @default.
- W2892005476 cites W2741401472 @default.
- W2892005476 cites W2792376557 @default.
- W2892005476 cites W3137369665 @default.
- W2892005476 cites W3150224893 @default.
- W2892005476 cites W4214886506 @default.
- W2892005476 doi "https://doi.org/10.1088/1361-6501/aadf12" @default.
- W2892005476 hasPublicationYear "2018" @default.
- W2892005476 type Work @default.
- W2892005476 sameAs 2892005476 @default.
- W2892005476 citedByCount "2" @default.
- W2892005476 countsByYear W28920054762022 @default.
- W2892005476 countsByYear W28920054762023 @default.
- W2892005476 crossrefType "journal-article" @default.
- W2892005476 hasAuthorship W2892005476A5015041976 @default.
- W2892005476 hasAuthorship W2892005476A5035556269 @default.
- W2892005476 hasAuthorship W2892005476A5076964360 @default.
- W2892005476 hasConcept C111919701 @default.
- W2892005476 hasConcept C124101348 @default.
- W2892005476 hasConcept C131979681 @default.
- W2892005476 hasConcept C154945302 @default.
- W2892005476 hasConcept C162324750 @default.
- W2892005476 hasConcept C187736073 @default.
- W2892005476 hasConcept C2524010 @default.
- W2892005476 hasConcept C28719098 @default.
- W2892005476 hasConcept C33923547 @default.
- W2892005476 hasConcept C41008148 @default.
- W2892005476 hasConcept C73555534 @default.
- W2892005476 hasConcept C79974875 @default.
- W2892005476 hasConcept C96250715 @default.
- W2892005476 hasConceptScore W2892005476C111919701 @default.
- W2892005476 hasConceptScore W2892005476C124101348 @default.
- W2892005476 hasConceptScore W2892005476C131979681 @default.
- W2892005476 hasConceptScore W2892005476C154945302 @default.
- W2892005476 hasConceptScore W2892005476C162324750 @default.
- W2892005476 hasConceptScore W2892005476C187736073 @default.
- W2892005476 hasConceptScore W2892005476C2524010 @default.
- W2892005476 hasConceptScore W2892005476C28719098 @default.
- W2892005476 hasConceptScore W2892005476C33923547 @default.
- W2892005476 hasConceptScore W2892005476C41008148 @default.
- W2892005476 hasConceptScore W2892005476C73555534 @default.
- W2892005476 hasConceptScore W2892005476C79974875 @default.
- W2892005476 hasConceptScore W2892005476C96250715 @default.
- W2892005476 hasFunder F4320322857 @default.
- W2892005476 hasIssue "11" @default.
- W2892005476 hasLocation W28920054761 @default.
- W2892005476 hasOpenAccess W2892005476 @default.
- W2892005476 hasPrimaryLocation W28920054761 @default.
- W2892005476 hasRelatedWork W1999627569 @default.
- W2892005476 hasRelatedWork W2048509577 @default.
- W2892005476 hasRelatedWork W2322793523 @default.
- W2892005476 hasRelatedWork W2383532021 @default.
- W2892005476 hasRelatedWork W275032887 @default.
- W2892005476 hasRelatedWork W3015348658 @default.
- W2892005476 hasRelatedWork W4236152845 @default.
- W2892005476 hasRelatedWork W4245623982 @default.
- W2892005476 hasRelatedWork W763609066 @default.
- W2892005476 hasRelatedWork W2356302966 @default.
- W2892005476 hasVolume "29" @default.
- W2892005476 isParatext "false" @default.
- W2892005476 isRetracted "false" @default.
- W2892005476 magId "2892005476" @default.