Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892014208> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2892014208 endingPage "104" @default.
- W2892014208 startingPage "95" @default.
- W2892014208 abstract "For most of the cells, water permeability and plasma membrane properties play a vital role in the optimal protocol for successful cryopreservation. Measuring the water permeability of cells during subzero temperature is essential. So far, there is no perfect segmentation technique to be used for the image processing task on subzero temperature accurately. The ice formation and variable background during freezing posed a significant challenge for most of the conventional segmentation algorithms. Thus, a robust and accurate segmentation approach that can accurately extract cells from extracellular ice that surrounding the cell boundary is needed. Therefore, we propose a convolutional neural network (CNN) architecture similar to U-Net but differs from those conventionally used in computer vision to extract all the cell boundaries as they shrank in the engulfing ice. The images used was obtained from the cryo-stage microscope, and the data was validated using the Hausdorff distance, means ± standard deviation for different methods of segmentation result using the CNN model. The experimental results prove that the typical CNN model extracts cell borders contour from the background in its subzero state more coherent and effective as compared to other traditional segmentation approaches." @default.
- W2892014208 created "2018-09-27" @default.
- W2892014208 creator A5018117910 @default.
- W2892014208 creator A5019943518 @default.
- W2892014208 creator A5046007759 @default.
- W2892014208 creator A5075899518 @default.
- W2892014208 creator A5077876275 @default.
- W2892014208 creator A5086969931 @default.
- W2892014208 creator A5090469219 @default.
- W2892014208 creator A5090755174 @default.
- W2892014208 date "2018-12-01" @default.
- W2892014208 modified "2023-10-14" @default.
- W2892014208 title "The application of convolution neural network based cell segmentation during cryopreservation" @default.
- W2892014208 cites W1641498739 @default.
- W2892014208 cites W1984428412 @default.
- W2892014208 cites W1998259955 @default.
- W2892014208 cites W2001350031 @default.
- W2892014208 cites W2005460590 @default.
- W2892014208 cites W2016165449 @default.
- W2892014208 cites W2035840936 @default.
- W2892014208 cites W2072430439 @default.
- W2892014208 cites W2087918909 @default.
- W2892014208 cites W2090427258 @default.
- W2892014208 cites W2098152234 @default.
- W2892014208 cites W2101187282 @default.
- W2892014208 cites W2101862080 @default.
- W2892014208 cites W2104095591 @default.
- W2892014208 cites W2106780881 @default.
- W2892014208 cites W2112796928 @default.
- W2892014208 cites W2113282793 @default.
- W2892014208 cites W2116040950 @default.
- W2892014208 cites W2124446947 @default.
- W2892014208 cites W2128089874 @default.
- W2892014208 cites W2141690231 @default.
- W2892014208 cites W2144133758 @default.
- W2892014208 cites W2147800946 @default.
- W2892014208 cites W2149184914 @default.
- W2892014208 cites W2151538727 @default.
- W2892014208 cites W2161237731 @default.
- W2892014208 cites W2395611524 @default.
- W2892014208 cites W3211330693 @default.
- W2892014208 doi "https://doi.org/10.1016/j.cryobiol.2018.09.003" @default.
- W2892014208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30219374" @default.
- W2892014208 hasPublicationYear "2018" @default.
- W2892014208 type Work @default.
- W2892014208 sameAs 2892014208 @default.
- W2892014208 citedByCount "7" @default.
- W2892014208 countsByYear W28920142082019 @default.
- W2892014208 countsByYear W28920142082020 @default.
- W2892014208 countsByYear W28920142082021 @default.
- W2892014208 countsByYear W28920142082022 @default.
- W2892014208 crossrefType "journal-article" @default.
- W2892014208 hasAuthorship W2892014208A5018117910 @default.
- W2892014208 hasAuthorship W2892014208A5019943518 @default.
- W2892014208 hasAuthorship W2892014208A5046007759 @default.
- W2892014208 hasAuthorship W2892014208A5075899518 @default.
- W2892014208 hasAuthorship W2892014208A5077876275 @default.
- W2892014208 hasAuthorship W2892014208A5086969931 @default.
- W2892014208 hasAuthorship W2892014208A5090469219 @default.
- W2892014208 hasAuthorship W2892014208A5090755174 @default.
- W2892014208 hasConcept C108583219 @default.
- W2892014208 hasConcept C124504099 @default.
- W2892014208 hasConcept C153180895 @default.
- W2892014208 hasConcept C154945302 @default.
- W2892014208 hasConcept C41008148 @default.
- W2892014208 hasConcept C81363708 @default.
- W2892014208 hasConcept C89600930 @default.
- W2892014208 hasConceptScore W2892014208C108583219 @default.
- W2892014208 hasConceptScore W2892014208C124504099 @default.
- W2892014208 hasConceptScore W2892014208C153180895 @default.
- W2892014208 hasConceptScore W2892014208C154945302 @default.
- W2892014208 hasConceptScore W2892014208C41008148 @default.
- W2892014208 hasConceptScore W2892014208C81363708 @default.
- W2892014208 hasConceptScore W2892014208C89600930 @default.
- W2892014208 hasFunder F4320321001 @default.
- W2892014208 hasLocation W28920142081 @default.
- W2892014208 hasLocation W28920142082 @default.
- W2892014208 hasOpenAccess W2892014208 @default.
- W2892014208 hasPrimaryLocation W28920142081 @default.
- W2892014208 hasRelatedWork W2738221750 @default.
- W2892014208 hasRelatedWork W2948658236 @default.
- W2892014208 hasRelatedWork W2971526870 @default.
- W2892014208 hasRelatedWork W2979932740 @default.
- W2892014208 hasRelatedWork W2994948129 @default.
- W2892014208 hasRelatedWork W3102253946 @default.
- W2892014208 hasRelatedWork W3144574764 @default.
- W2892014208 hasRelatedWork W3156786002 @default.
- W2892014208 hasRelatedWork W4226289457 @default.
- W2892014208 hasRelatedWork W4293211451 @default.
- W2892014208 hasVolume "85" @default.
- W2892014208 isParatext "false" @default.
- W2892014208 isRetracted "false" @default.
- W2892014208 magId "2892014208" @default.
- W2892014208 workType "article" @default.