Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892014430> ?p ?o ?g. }
- W2892014430 endingPage "92" @default.
- W2892014430 startingPage "85" @default.
- W2892014430 abstract "Compared to pH monitoring during the anaerobic digestion process, alkalinity as an indicator could provide earlier warning for instability of digestion process, which is very important for efficient operation of biogas digesters, especially for multiple feeding substances. However, the online monitoring of alkalinity is still unavailable until now. In this study, available online measured parameters such as pH, oxidation and reduction potential (ORP), and electrical conductivity were selected as inputs, and the soft sensor method based on artificial neural network (ANN) was applied for alkalinity modeling to develop an online monitoring strategy. The dataset was obtained from a 6 month continuously operating anaerobic co-digestion system of cow manure, corn straw, and fruit and vegetable waste, and splited randomly by cross-validation. The results show that the optimum ANN model for total alkalinity prediction is 3-2-1 structure based on back propagation-feedforward neural network. The constructed ANN model was proved to be reliable through the predictive accuracy analysis and sensitivity analysis. The coefficient of determination (R2) of 0.9948 was obtained. ORP is the most significant model factor with the highest sensitivity degree. The online alkalinity monitoring may effectively prevent the failure of anaerobic digestion process and improve the anaerobic digestion efficiency practically." @default.
- W2892014430 created "2018-09-27" @default.
- W2892014430 creator A5003770266 @default.
- W2892014430 creator A5008467620 @default.
- W2892014430 creator A5057751824 @default.
- W2892014430 creator A5063089557 @default.
- W2892014430 creator A5064992482 @default.
- W2892014430 creator A5070467333 @default.
- W2892014430 creator A5088781069 @default.
- W2892014430 date "2018-12-01" @default.
- W2892014430 modified "2023-10-18" @default.
- W2892014430 title "Evaluation of artificial neural network models for online monitoring of alkalinity in anaerobic co-digestion system" @default.
- W2892014430 cites W1973713811 @default.
- W2892014430 cites W1993533808 @default.
- W2892014430 cites W1997068419 @default.
- W2892014430 cites W1997548970 @default.
- W2892014430 cites W2006559408 @default.
- W2892014430 cites W2008865190 @default.
- W2892014430 cites W2015982880 @default.
- W2892014430 cites W2023178139 @default.
- W2892014430 cites W2027402385 @default.
- W2892014430 cites W2036892083 @default.
- W2892014430 cites W2064933334 @default.
- W2892014430 cites W2073488775 @default.
- W2892014430 cites W2075889761 @default.
- W2892014430 cites W2091602214 @default.
- W2892014430 cites W2095239580 @default.
- W2892014430 cites W2123847705 @default.
- W2892014430 cites W2137970346 @default.
- W2892014430 cites W2154830650 @default.
- W2892014430 cites W2221854890 @default.
- W2892014430 cites W2552343211 @default.
- W2892014430 cites W2563819459 @default.
- W2892014430 cites W2739370970 @default.
- W2892014430 cites W2747425025 @default.
- W2892014430 cites W2756521290 @default.
- W2892014430 cites W307977709 @default.
- W2892014430 doi "https://doi.org/10.1016/j.bej.2018.09.010" @default.
- W2892014430 hasPublicationYear "2018" @default.
- W2892014430 type Work @default.
- W2892014430 sameAs 2892014430 @default.
- W2892014430 citedByCount "37" @default.
- W2892014430 countsByYear W28920144302019 @default.
- W2892014430 countsByYear W28920144302020 @default.
- W2892014430 countsByYear W28920144302021 @default.
- W2892014430 countsByYear W28920144302022 @default.
- W2892014430 countsByYear W28920144302023 @default.
- W2892014430 crossrefType "journal-article" @default.
- W2892014430 hasAuthorship W2892014430A5003770266 @default.
- W2892014430 hasAuthorship W2892014430A5008467620 @default.
- W2892014430 hasAuthorship W2892014430A5057751824 @default.
- W2892014430 hasAuthorship W2892014430A5063089557 @default.
- W2892014430 hasAuthorship W2892014430A5064992482 @default.
- W2892014430 hasAuthorship W2892014430A5070467333 @default.
- W2892014430 hasAuthorship W2892014430A5088781069 @default.
- W2892014430 hasConcept C119857082 @default.
- W2892014430 hasConcept C127413603 @default.
- W2892014430 hasConcept C178790620 @default.
- W2892014430 hasConcept C185592680 @default.
- W2892014430 hasConcept C2781357212 @default.
- W2892014430 hasConcept C39432304 @default.
- W2892014430 hasConcept C41008148 @default.
- W2892014430 hasConcept C43617362 @default.
- W2892014430 hasConcept C45812177 @default.
- W2892014430 hasConcept C47702885 @default.
- W2892014430 hasConcept C499616599 @default.
- W2892014430 hasConcept C50644808 @default.
- W2892014430 hasConcept C516920438 @default.
- W2892014430 hasConcept C528095902 @default.
- W2892014430 hasConcept C548081761 @default.
- W2892014430 hasConcept C75212476 @default.
- W2892014430 hasConceptScore W2892014430C119857082 @default.
- W2892014430 hasConceptScore W2892014430C127413603 @default.
- W2892014430 hasConceptScore W2892014430C178790620 @default.
- W2892014430 hasConceptScore W2892014430C185592680 @default.
- W2892014430 hasConceptScore W2892014430C2781357212 @default.
- W2892014430 hasConceptScore W2892014430C39432304 @default.
- W2892014430 hasConceptScore W2892014430C41008148 @default.
- W2892014430 hasConceptScore W2892014430C43617362 @default.
- W2892014430 hasConceptScore W2892014430C45812177 @default.
- W2892014430 hasConceptScore W2892014430C47702885 @default.
- W2892014430 hasConceptScore W2892014430C499616599 @default.
- W2892014430 hasConceptScore W2892014430C50644808 @default.
- W2892014430 hasConceptScore W2892014430C516920438 @default.
- W2892014430 hasConceptScore W2892014430C528095902 @default.
- W2892014430 hasConceptScore W2892014430C548081761 @default.
- W2892014430 hasConceptScore W2892014430C75212476 @default.
- W2892014430 hasLocation W28920144301 @default.
- W2892014430 hasOpenAccess W2892014430 @default.
- W2892014430 hasPrimaryLocation W28920144301 @default.
- W2892014430 hasRelatedWork W2021223142 @default.
- W2892014430 hasRelatedWork W2377891239 @default.
- W2892014430 hasRelatedWork W2415860176 @default.
- W2892014430 hasRelatedWork W2885627492 @default.
- W2892014430 hasRelatedWork W2911320554 @default.
- W2892014430 hasRelatedWork W2999416051 @default.
- W2892014430 hasRelatedWork W3017954739 @default.
- W2892014430 hasRelatedWork W4235957919 @default.