Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892021586> ?p ?o ?g. }
- W2892021586 endingPage "145" @default.
- W2892021586 startingPage "133" @default.
- W2892021586 abstract "Abstract Protected from harmful radiation, subfreezing temperatures, and low pressures, subsurface rock-hosted habitats provide potentially sustainable refugia for microbial ecosystems inside small rocky planets, such as Mars. For many chemolithotrophic communities on Earth, water–rock alteration reactions have been shown to produce the key electron donors and acceptors necessary to sustain microbial life on geologic timescales. Here we quantitatively demonstrate that radiolysis likely generated concentrations of dissolved H 2 capable of sustaining microbial communities in the subsurface of Noachian Mars (3.7–4.1 Gyr ago). When considering an environment with H 2 O groundwater, dissolved H 2 concentrations reach up to ∼55 mM in a cold early Mars climate scenario and ∼35 mM in a warm early Mars climate scenario; whereas when considering an environment with eutectic NaCl brine groundwater, dissolved H 2 concentrations reach up to ∼85 mM in a cold early Mars climate scenario and ∼45 mM in a warm early Mars climate scenario. Specifically within the subsurface habitable zone, dissolved H 2 concentrations range from ∼50–55 mM for a cold climate scenario with H 2 O groundwater. For a warm climate scenario with H 2 O groundwater, dissolved H 2 concentrations within the subsurface habitable zone range from ∼1–30 mM. For a cold climate scenario with eutectic NaCl brine groundwater, dissolved H 2 concentrations within the subsurface habitable zone range from ∼65–85 mM. For a warm climate scenario with eutectic NaCl brine groundwater, dissolved H 2 concentrations within the subsurface habitable zone range from ∼1-40 mM. Radiolysis likely produced [1.3–4.8] × 10 10 moles H 2 per year globally during the Noachian depending on the assumed porosity and groundwater composition. Radiolytic H 2 , and CH 4 derived from radiolytic H 2 , can be locked in hybrid clathrate hydrates within the cryosphere and released by large impacts, volcanism, or obliquity variations. This process could warm the Noachian climate to above-freezing temperatures, and we predict that ∼1–8 warming events would be possible during the Noachian and Hesperian solely from radiolytically produced H 2 . We demonstrate that the region immediately beneath the cryosphere, termed the subcryospheric highly-fractured zone (SHZ), likely contained dissolved H 2 concentrations and temperatures suitable for life regardless of the background climate scenario, making it the most consistently habitable environment on ancient Mars in terms of reductant availability. Material from this zone can be exposed by faulting and in the ejecta and uplifts of impacts, making the SHZ a crucial astrobiological target for testing the subsurface biosphere hypothesis." @default.
- W2892021586 created "2018-09-27" @default.
- W2892021586 creator A5012403253 @default.
- W2892021586 creator A5025856745 @default.
- W2892021586 creator A5028285162 @default.
- W2892021586 creator A5031478048 @default.
- W2892021586 creator A5062872049 @default.
- W2892021586 creator A5076807081 @default.
- W2892021586 creator A5087674032 @default.
- W2892021586 date "2018-11-01" @default.
- W2892021586 modified "2023-09-29" @default.
- W2892021586 title "Radiolytic H2 production on Noachian Mars: Implications for habitability and atmospheric warming" @default.
- W2892021586 cites W1534096445 @default.
- W2892021586 cites W1614550045 @default.
- W2892021586 cites W1752008511 @default.
- W2892021586 cites W1878691942 @default.
- W2892021586 cites W1966440968 @default.
- W2892021586 cites W1969069040 @default.
- W2892021586 cites W1979508846 @default.
- W2892021586 cites W1979532470 @default.
- W2892021586 cites W1980825115 @default.
- W2892021586 cites W1981061458 @default.
- W2892021586 cites W1983384197 @default.
- W2892021586 cites W1983564921 @default.
- W2892021586 cites W1985038015 @default.
- W2892021586 cites W1986859129 @default.
- W2892021586 cites W1988351418 @default.
- W2892021586 cites W1990164306 @default.
- W2892021586 cites W1995176891 @default.
- W2892021586 cites W1999569822 @default.
- W2892021586 cites W1999728927 @default.
- W2892021586 cites W2012301166 @default.
- W2892021586 cites W2013748498 @default.
- W2892021586 cites W2014365296 @default.
- W2892021586 cites W2034754132 @default.
- W2892021586 cites W2036202110 @default.
- W2892021586 cites W2038788794 @default.
- W2892021586 cites W2040424396 @default.
- W2892021586 cites W2044927815 @default.
- W2892021586 cites W2054484361 @default.
- W2892021586 cites W2058752782 @default.
- W2892021586 cites W2072902278 @default.
- W2892021586 cites W2073306612 @default.
- W2892021586 cites W2084070093 @default.
- W2892021586 cites W2090157006 @default.
- W2892021586 cites W2107710538 @default.
- W2892021586 cites W2111473359 @default.
- W2892021586 cites W2119246842 @default.
- W2892021586 cites W2126028255 @default.
- W2892021586 cites W2139733953 @default.
- W2892021586 cites W2144750856 @default.
- W2892021586 cites W2146576350 @default.
- W2892021586 cites W2148965904 @default.
- W2892021586 cites W2153323573 @default.
- W2892021586 cites W2166035271 @default.
- W2892021586 cites W2245313526 @default.
- W2892021586 cites W2267948239 @default.
- W2892021586 cites W2276352992 @default.
- W2892021586 cites W2366970190 @default.
- W2892021586 cites W2407140397 @default.
- W2892021586 cites W2537551939 @default.
- W2892021586 cites W2545903499 @default.
- W2892021586 cites W2553112970 @default.
- W2892021586 cites W2554809904 @default.
- W2892021586 cites W2570590743 @default.
- W2892021586 cites W2606994638 @default.
- W2892021586 cites W2608282904 @default.
- W2892021586 cites W2739146139 @default.
- W2892021586 cites W2755924591 @default.
- W2892021586 cites W2762149553 @default.
- W2892021586 cites W2771336181 @default.
- W2892021586 cites W2791323160 @default.
- W2892021586 cites W4249929197 @default.
- W2892021586 cites W996152264 @default.
- W2892021586 doi "https://doi.org/10.1016/j.epsl.2018.09.001" @default.
- W2892021586 hasPublicationYear "2018" @default.
- W2892021586 type Work @default.
- W2892021586 sameAs 2892021586 @default.
- W2892021586 citedByCount "48" @default.
- W2892021586 countsByYear W28920215862017 @default.
- W2892021586 countsByYear W28920215862019 @default.
- W2892021586 countsByYear W28920215862020 @default.
- W2892021586 countsByYear W28920215862021 @default.
- W2892021586 countsByYear W28920215862022 @default.
- W2892021586 countsByYear W28920215862023 @default.
- W2892021586 crossrefType "journal-article" @default.
- W2892021586 hasAuthorship W2892021586A5012403253 @default.
- W2892021586 hasAuthorship W2892021586A5025856745 @default.
- W2892021586 hasAuthorship W2892021586A5028285162 @default.
- W2892021586 hasAuthorship W2892021586A5031478048 @default.
- W2892021586 hasAuthorship W2892021586A5062872049 @default.
- W2892021586 hasAuthorship W2892021586A5076807081 @default.
- W2892021586 hasAuthorship W2892021586A5087674032 @default.
- W2892021586 hasConcept C121332964 @default.
- W2892021586 hasConcept C127313418 @default.
- W2892021586 hasConcept C1965285 @default.
- W2892021586 hasConcept C21435255 @default.
- W2892021586 hasConcept C2776860271 @default.