Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892022198> ?p ?o ?g. }
- W2892022198 abstract "Objectives: Define a clinically usable preprocessing pipeline for MRI data. Predict brain age using various machine learning and deep learning algorithms. Define Caveat against common machine learning traps. Data and Methods: We used 1597 open-access T1 weighted MRI from 24 hospitals. Preprocessing consisted in applying: N4 bias field correction, registration to MNI152 space, white and grey stripe intensity normalization, skull stripping and brain tissue segmentation. Prediction of brain age was done with growing complexity of data input (histograms, grey matter from segmented MRI, raw data) and models for training (linear models, non linear model such as gradient boosting over decision trees, and 2D and 3D convolutional neural networks). Work on interpretability consisted in (i) proceeding on basic data visualization like correlations maps between age and voxels value, and generating (ii) weights maps of simpler models, (iii) heatmap from CNNs model with occlusion method. Results: Processing time seemed feasible in a radiological workflow: 5 min for one 3D T1 MRI. We found a significant correlation between age and gray matter volume with a correlation r = -0.74. Our best model obtained a mean absolute error of 3.60 years, with fine tuned convolution neural network (CNN) pretrained on ImageNet. We carefully analyzed and interpreted the center effect. Our work on interpretability on simpler models permitted to observe heterogeneity of prediction depending on brain regions known for being involved in ageing (grey matter, ventricles). Occlusion method of CNN showed the importance of Insula and deep grey matter (thalami, caudate nuclei) in predictions. Conclusions: Predicting the brain age using deep learning could be a standardized metric usable in daily neuroradiological reports. An explainable algorithm gives more confidence and acceptability for its use in practice. More clinical studies using this new quantitative biomarker in neurological diseases will show how to use it at its best." @default.
- W2892022198 created "2018-09-27" @default.
- W2892022198 creator A5033401905 @default.
- W2892022198 creator A5057770699 @default.
- W2892022198 creator A5072755156 @default.
- W2892022198 creator A5076695242 @default.
- W2892022198 date "2018-09-10" @default.
- W2892022198 modified "2023-09-25" @default.
- W2892022198 title "Brain age prediction of healthy subjects on anatomic MRI with deep learning: going beyond with an explainable AI mindset" @default.
- W2892022198 cites W1849277567 @default.
- W2892022198 cites W1988790447 @default.
- W2892022198 cites W2012059337 @default.
- W2892022198 cites W2049357400 @default.
- W2892022198 cites W2091931051 @default.
- W2892022198 cites W2093683735 @default.
- W2892022198 cites W2096966803 @default.
- W2892022198 cites W2108103428 @default.
- W2892022198 cites W2118421222 @default.
- W2892022198 cites W2126629875 @default.
- W2892022198 cites W2130265908 @default.
- W2892022198 cites W2136573752 @default.
- W2892022198 cites W2148946219 @default.
- W2892022198 cites W2167579130 @default.
- W2892022198 cites W2168199261 @default.
- W2892022198 cites W2257979135 @default.
- W2892022198 cites W2343172899 @default.
- W2892022198 cites W2544894372 @default.
- W2892022198 cites W2557738935 @default.
- W2892022198 cites W2579617530 @default.
- W2892022198 cites W2581082771 @default.
- W2892022198 cites W2591216191 @default.
- W2892022198 cites W2592201217 @default.
- W2892022198 cites W2611467245 @default.
- W2892022198 cites W2618530766 @default.
- W2892022198 cites W2718180175 @default.
- W2892022198 cites W2765571304 @default.
- W2892022198 cites W2772804633 @default.
- W2892022198 cites W2778796877 @default.
- W2892022198 cites W2782719864 @default.
- W2892022198 cites W2786005418 @default.
- W2892022198 cites W2795077733 @default.
- W2892022198 cites W2801761532 @default.
- W2892022198 cites W2804608955 @default.
- W2892022198 cites W2915645120 @default.
- W2892022198 cites W2949117887 @default.
- W2892022198 cites W2949650786 @default.
- W2892022198 cites W2951220338 @default.
- W2892022198 doi "https://doi.org/10.1101/413302" @default.
- W2892022198 hasPublicationYear "2018" @default.
- W2892022198 type Work @default.
- W2892022198 sameAs 2892022198 @default.
- W2892022198 citedByCount "7" @default.
- W2892022198 countsByYear W28920221982019 @default.
- W2892022198 countsByYear W28920221982020 @default.
- W2892022198 countsByYear W28920221982021 @default.
- W2892022198 countsByYear W28920221982022 @default.
- W2892022198 crossrefType "posted-content" @default.
- W2892022198 hasAuthorship W2892022198A5033401905 @default.
- W2892022198 hasAuthorship W2892022198A5057770699 @default.
- W2892022198 hasAuthorship W2892022198A5072755156 @default.
- W2892022198 hasAuthorship W2892022198A5076695242 @default.
- W2892022198 hasBestOaLocation W28920221981 @default.
- W2892022198 hasConcept C108583219 @default.
- W2892022198 hasConcept C116580362 @default.
- W2892022198 hasConcept C119857082 @default.
- W2892022198 hasConcept C126838900 @default.
- W2892022198 hasConcept C143409427 @default.
- W2892022198 hasConcept C153180895 @default.
- W2892022198 hasConcept C154945302 @default.
- W2892022198 hasConcept C2778013878 @default.
- W2892022198 hasConcept C2781067378 @default.
- W2892022198 hasConcept C2781192897 @default.
- W2892022198 hasConcept C41008148 @default.
- W2892022198 hasConcept C54170458 @default.
- W2892022198 hasConcept C71924100 @default.
- W2892022198 hasConcept C81363708 @default.
- W2892022198 hasConceptScore W2892022198C108583219 @default.
- W2892022198 hasConceptScore W2892022198C116580362 @default.
- W2892022198 hasConceptScore W2892022198C119857082 @default.
- W2892022198 hasConceptScore W2892022198C126838900 @default.
- W2892022198 hasConceptScore W2892022198C143409427 @default.
- W2892022198 hasConceptScore W2892022198C153180895 @default.
- W2892022198 hasConceptScore W2892022198C154945302 @default.
- W2892022198 hasConceptScore W2892022198C2778013878 @default.
- W2892022198 hasConceptScore W2892022198C2781067378 @default.
- W2892022198 hasConceptScore W2892022198C2781192897 @default.
- W2892022198 hasConceptScore W2892022198C41008148 @default.
- W2892022198 hasConceptScore W2892022198C54170458 @default.
- W2892022198 hasConceptScore W2892022198C71924100 @default.
- W2892022198 hasConceptScore W2892022198C81363708 @default.
- W2892022198 hasLocation W28920221981 @default.
- W2892022198 hasOpenAccess W2892022198 @default.
- W2892022198 hasPrimaryLocation W28920221981 @default.
- W2892022198 hasRelatedWork W2605281151 @default.
- W2892022198 hasRelatedWork W2963041618 @default.
- W2892022198 hasRelatedWork W3006943036 @default.
- W2892022198 hasRelatedWork W3156786002 @default.
- W2892022198 hasRelatedWork W3191046242 @default.
- W2892022198 hasRelatedWork W4206493799 @default.
- W2892022198 hasRelatedWork W4213225422 @default.