Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892023672> ?p ?o ?g. }
- W2892023672 endingPage "5304" @default.
- W2892023672 startingPage "5293" @default.
- W2892023672 abstract "Purpose The presence of respiratory motion during radiation treatment leads to degradation of the expected dose distribution, both for target coverage and healthy tissue sparing, particularly for techniques like pencil beam scanning proton therapy which have dynamic delivery systems. While tools exist to estimate this degraded four‐dimensional (4D) dose, they typically have one or more deficiencies such as not including the particular effects from a dynamic delivery, using analytical dose calculations, and/or using nonphysical dose‐accumulation methods. This work presents a clinically useful 4D‐dose calculator that addresses each of these shortcomings. Methods To quickly compute the 4D dose, the three main tasks of the calculator were run on graphics processing units ( GPU s). These tasks were (a) simulating the delivery of the plan using measured delivery parameters to distribute the plan amongst 4 DCT phases characterizing the patient breathing, (b) using an in‐house Monte Carlo simulation ( MC ) dose calculator to determine the dose delivered to each breathing phase, and (c) accumulating the doses from the various breathing phases onto a single phase for evaluation. The accumulation was performed by individually transferring the energy and mass of dose‐grid subvoxels, a technique that models the transfer of dose in a more physically realistic manner. The calculator was run on three test cases, with lung, esophagus, and liver targets, respectively, to assess the various uncertainties in the beam delivery simulation as well as to characterize the dose‐accumulation technique. Results Four‐dimensional doses were successfully computed for the three test cases with computation times ranging from 4–6 min on a server with eight NVIDIA Titan X graphics cards; the most time‐consuming component was the MC dose engine. The subvoxel‐based dose‐accumulation technique produced stable 4D‐dose distributions at subvoxel scales of 0.5–1.0 mm without impairing the total computation time. The uncertainties in the beam delivery simulation led to moderate variations of the dose–volume histograms for these cases; the variations were reduced by implementing repainting or phase‐gating motion mitigation techniques in the calculator. Conclusions A MC ‐based and GPU ‐accelerated 4D‐dose calculator was developed to estimate the effects of respiratory motion on pencil beam scanning proton therapy treatments. After future validation, the calculator could be used to assess treatment plans and its quick runtime would make it easily usable in a future 4D‐robust optimization system." @default.
- W2892023672 created "2018-09-27" @default.
- W2892023672 creator A5018667251 @default.
- W2892023672 creator A5021423770 @default.
- W2892023672 creator A5040012120 @default.
- W2892023672 creator A5052777541 @default.
- W2892023672 creator A5078193685 @default.
- W2892023672 creator A5091883037 @default.
- W2892023672 date "2018-10-31" @default.
- W2892023672 modified "2023-10-14" @default.
- W2892023672 title "A Monte‐Carlo‐based and <scp>GPU</scp> ‐accelerated 4D‐dose calculator for a pencil beam scanning proton therapy system" @default.
- W2892023672 cites W1964043372 @default.
- W2892023672 cites W1965242704 @default.
- W2892023672 cites W1967396578 @default.
- W2892023672 cites W1974283163 @default.
- W2892023672 cites W1975718149 @default.
- W2892023672 cites W1982155610 @default.
- W2892023672 cites W1986019734 @default.
- W2892023672 cites W1987134214 @default.
- W2892023672 cites W1987800279 @default.
- W2892023672 cites W1989301920 @default.
- W2892023672 cites W1989515102 @default.
- W2892023672 cites W1995280305 @default.
- W2892023672 cites W1995766420 @default.
- W2892023672 cites W2004583529 @default.
- W2892023672 cites W2004883380 @default.
- W2892023672 cites W2014916599 @default.
- W2892023672 cites W2015128735 @default.
- W2892023672 cites W2015290878 @default.
- W2892023672 cites W2020141781 @default.
- W2892023672 cites W2020204678 @default.
- W2892023672 cites W2023155618 @default.
- W2892023672 cites W2025553206 @default.
- W2892023672 cites W2027846439 @default.
- W2892023672 cites W2029417726 @default.
- W2892023672 cites W2030050839 @default.
- W2892023672 cites W2045415729 @default.
- W2892023672 cites W2049843154 @default.
- W2892023672 cites W2050420015 @default.
- W2892023672 cites W2051756045 @default.
- W2892023672 cites W2053312600 @default.
- W2892023672 cites W2056629225 @default.
- W2892023672 cites W2059950254 @default.
- W2892023672 cites W2060760977 @default.
- W2892023672 cites W2062815412 @default.
- W2892023672 cites W2067598514 @default.
- W2892023672 cites W2067826224 @default.
- W2892023672 cites W2071403014 @default.
- W2892023672 cites W2071632269 @default.
- W2892023672 cites W2071962819 @default.
- W2892023672 cites W2075521603 @default.
- W2892023672 cites W2076072582 @default.
- W2892023672 cites W2078763031 @default.
- W2892023672 cites W2084675397 @default.
- W2892023672 cites W2085188303 @default.
- W2892023672 cites W2087521509 @default.
- W2892023672 cites W2093338140 @default.
- W2892023672 cites W2129065779 @default.
- W2892023672 cites W2133531250 @default.
- W2892023672 cites W2136253497 @default.
- W2892023672 cites W2138020108 @default.
- W2892023672 cites W2143101233 @default.
- W2892023672 cites W2143214617 @default.
- W2892023672 cites W2155758197 @default.
- W2892023672 cites W2163329967 @default.
- W2892023672 cites W2254790447 @default.
- W2892023672 cites W2293429046 @default.
- W2892023672 cites W2525319473 @default.
- W2892023672 cites W2556203228 @default.
- W2892023672 cites W2591160334 @default.
- W2892023672 cites W2605239868 @default.
- W2892023672 cites W2625610786 @default.
- W2892023672 cites W2693278447 @default.
- W2892023672 cites W2744153187 @default.
- W2892023672 cites W2747840560 @default.
- W2892023672 cites W2748444750 @default.
- W2892023672 cites W2771240168 @default.
- W2892023672 cites W2788058539 @default.
- W2892023672 cites W2792606653 @default.
- W2892023672 cites W2882995024 @default.
- W2892023672 cites W3124937987 @default.
- W2892023672 cites W4255274864 @default.
- W2892023672 doi "https://doi.org/10.1002/mp.13182" @default.
- W2892023672 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30203550" @default.
- W2892023672 hasPublicationYear "2018" @default.
- W2892023672 type Work @default.
- W2892023672 sameAs 2892023672 @default.
- W2892023672 citedByCount "18" @default.
- W2892023672 countsByYear W28920236722019 @default.
- W2892023672 countsByYear W28920236722020 @default.
- W2892023672 countsByYear W28920236722021 @default.
- W2892023672 countsByYear W28920236722022 @default.
- W2892023672 countsByYear W28920236722023 @default.
- W2892023672 crossrefType "journal-article" @default.
- W2892023672 hasAuthorship W2892023672A5018667251 @default.
- W2892023672 hasAuthorship W2892023672A5021423770 @default.
- W2892023672 hasAuthorship W2892023672A5040012120 @default.
- W2892023672 hasAuthorship W2892023672A5052777541 @default.