Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892030443> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2892030443 endingPage "01010" @default.
- W2892030443 startingPage "01010" @default.
- W2892030443 abstract "In the paper, it is proposed to develop a machine learning based intelligent defect detection system for metal products. The common machine vision system has the surface (stain, shallow pit, shallow tumor, scratches, Edge defects, pattern defects) detection, or for the processing of the size, diameter, diameter, eccentricity, height, thickness and other parts of the non-contact numerical parameters of detection. Considering the quality of the work piece and the defects of the standard, so for the quality of customized testing requirements, the study is the development of machine vision and machine learning metal products defect detection system, mainly composed of three procedures: Image preprocessing, training procedures and testing procedures. The system architecture consists of three parts: (1) Image preprocessing: we first use the machine vision. OPENCV to carry out the image pre-processing part of the product before the detection. (2) Training procedures: The algorithm of the machine learning includes the convolution neural network (CNN), chunk-max pooling is used to train the program, and the generative adversarial network (GAN) based architecture is used to solve the problem of small datasets for surface defects. (3) Testing procedures:The Python language is used to write the program and implement the testing procedures with the GPU-Based embedded hardware In industries, collecting training dataset is usually costly and related methods are highly dataset-dependent. So most companies cannot provide Big-data to be analyzed or applied. By the experimental results, the recognition accuracy can be obviously improved as increasing data augmentation by GAN-Based samples maker. Manual inspection is labor intensive, costly and less in efficiency. Therefore, this study will contribute to technological innovation, industry, national development and other applications. (1) The use of intelligent machine learning technology will make the industry 4.0 technology more sophisticated. (2) It will make the development of equipment industry be better by the machine learning applications. (3) It will increase the economics and productivity of countries for the aging of the population by machine learning." @default.
- W2892030443 created "2018-09-27" @default.
- W2892030443 creator A5021027102 @default.
- W2892030443 creator A5043787632 @default.
- W2892030443 date "2018-01-01" @default.
- W2892030443 modified "2023-10-06" @default.
- W2892030443 title "Study on Machine Learning Based Intelligent Defect Detection System" @default.
- W2892030443 cites W1986306729 @default.
- W2892030443 cites W2289997491 @default.
- W2892030443 cites W2353388427 @default.
- W2892030443 cites W2526227069 @default.
- W2892030443 cites W2527159233 @default.
- W2892030443 cites W2555875178 @default.
- W2892030443 cites W2559178946 @default.
- W2892030443 cites W2586791748 @default.
- W2892030443 cites W2589306531 @default.
- W2892030443 cites W2592539375 @default.
- W2892030443 doi "https://doi.org/10.1051/matecconf/201820101010" @default.
- W2892030443 hasPublicationYear "2018" @default.
- W2892030443 type Work @default.
- W2892030443 sameAs 2892030443 @default.
- W2892030443 citedByCount "8" @default.
- W2892030443 countsByYear W28920304432020 @default.
- W2892030443 countsByYear W28920304432021 @default.
- W2892030443 countsByYear W28920304432023 @default.
- W2892030443 crossrefType "journal-article" @default.
- W2892030443 hasAuthorship W2892030443A5021027102 @default.
- W2892030443 hasAuthorship W2892030443A5043787632 @default.
- W2892030443 hasBestOaLocation W28920304431 @default.
- W2892030443 hasConcept C111919701 @default.
- W2892030443 hasConcept C115961682 @default.
- W2892030443 hasConcept C119857082 @default.
- W2892030443 hasConcept C154945302 @default.
- W2892030443 hasConcept C31972630 @default.
- W2892030443 hasConcept C34736171 @default.
- W2892030443 hasConcept C41008148 @default.
- W2892030443 hasConcept C50644808 @default.
- W2892030443 hasConcept C519991488 @default.
- W2892030443 hasConcept C5339829 @default.
- W2892030443 hasConcept C81363708 @default.
- W2892030443 hasConcept C9417928 @default.
- W2892030443 hasConceptScore W2892030443C111919701 @default.
- W2892030443 hasConceptScore W2892030443C115961682 @default.
- W2892030443 hasConceptScore W2892030443C119857082 @default.
- W2892030443 hasConceptScore W2892030443C154945302 @default.
- W2892030443 hasConceptScore W2892030443C31972630 @default.
- W2892030443 hasConceptScore W2892030443C34736171 @default.
- W2892030443 hasConceptScore W2892030443C41008148 @default.
- W2892030443 hasConceptScore W2892030443C50644808 @default.
- W2892030443 hasConceptScore W2892030443C519991488 @default.
- W2892030443 hasConceptScore W2892030443C5339829 @default.
- W2892030443 hasConceptScore W2892030443C81363708 @default.
- W2892030443 hasConceptScore W2892030443C9417928 @default.
- W2892030443 hasLocation W28920304431 @default.
- W2892030443 hasLocation W28920304432 @default.
- W2892030443 hasOpenAccess W2892030443 @default.
- W2892030443 hasPrimaryLocation W28920304431 @default.
- W2892030443 hasRelatedWork W2148258325 @default.
- W2892030443 hasRelatedWork W2353388427 @default.
- W2892030443 hasRelatedWork W2394038673 @default.
- W2892030443 hasRelatedWork W2785955617 @default.
- W2892030443 hasRelatedWork W2899307613 @default.
- W2892030443 hasRelatedWork W2997394683 @default.
- W2892030443 hasRelatedWork W3027997911 @default.
- W2892030443 hasRelatedWork W3216143833 @default.
- W2892030443 hasRelatedWork W4287776258 @default.
- W2892030443 hasRelatedWork W1966592431 @default.
- W2892030443 hasVolume "201" @default.
- W2892030443 isParatext "false" @default.
- W2892030443 isRetracted "false" @default.
- W2892030443 magId "2892030443" @default.
- W2892030443 workType "article" @default.