Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892038686> ?p ?o ?g. }
- W2892038686 endingPage "2330" @default.
- W2892038686 startingPage "2322" @default.
- W2892038686 abstract "Core Ideas We compared five methods for applying crop models to predict yield potential. A global weather database was divided into training and test sites. Metamodels and weather generation approaches performed best. Nearest neighbor interpolation can be replaced by superior and computationally efficient methods. Opportunities for and constraints to crop production can be assessed with crop growth simulation models. Most crop simulation models require daily weather data as input but such data are generally not available at a high spatial resolution. Several approaches have been developed to estimate yield potential (Yp) at locations without daily weather data (weather stations) but these have not been compared. We used two crop simulation models (WOFOST and LINTUL) to compute Yp for two crops for the entire world. A global weather database was divided into 856 training and 12,808 testing sites. We predicted Yp at the testing sites by using five main methods (eight methods if one considers within‐method variants): (i) weather interpolation followed by simulation; (ii) nearest neighbor interpolation; (iii) thin plate spline interpolation, either with or without covariates; (iv) Random Forest‐based metamodels with either climatic or bioclimatic variables; and (v) weather generation from either climate data or interpolated climate data, followed by simulation. The metamodel with bioclimatic variables performed best [average root mean square error (RMSE) = 667 ± 111 kg ha −1 ], followed by weather generation from climate data, weather interpolation, and spatial interpolation of yield with climatic covariables. The most commonly used method, nearest neighbor interpolation, performed worst (RMSE = 1763 ± 472 kg ha −1 ). The optimal method for a particular study will depend on the simulation model, the region, weather station density, and other variables but these results suggest that for estimating Yp, alternatives to nearest neighbor interpolation should be considered." @default.
- W2892038686 created "2018-09-27" @default.
- W2892038686 creator A5044124578 @default.
- W2892038686 creator A5080026572 @default.
- W2892038686 date "2018-11-01" @default.
- W2892038686 modified "2023-09-28" @default.
- W2892038686 title "Methods for Spatial Prediction of Crop Yield Potential" @default.
- W2892038686 cites W1972280346 @default.
- W2892038686 cites W1982627164 @default.
- W2892038686 cites W1989049991 @default.
- W2892038686 cites W2007873570 @default.
- W2892038686 cites W2008092704 @default.
- W2892038686 cites W2010946360 @default.
- W2892038686 cites W2021531605 @default.
- W2892038686 cites W2046155621 @default.
- W2892038686 cites W2055631747 @default.
- W2892038686 cites W2057867151 @default.
- W2892038686 cites W2071170363 @default.
- W2892038686 cites W2076358440 @default.
- W2892038686 cites W2076501054 @default.
- W2892038686 cites W2091206738 @default.
- W2892038686 cites W2091327498 @default.
- W2892038686 cites W2094263385 @default.
- W2892038686 cites W2097428353 @default.
- W2892038686 cites W2097601813 @default.
- W2892038686 cites W2114248304 @default.
- W2892038686 cites W2118182941 @default.
- W2892038686 cites W2118921617 @default.
- W2892038686 cites W2125740993 @default.
- W2892038686 cites W2127201446 @default.
- W2892038686 cites W2143395434 @default.
- W2892038686 cites W2146795535 @default.
- W2892038686 cites W2148170135 @default.
- W2892038686 cites W2149088493 @default.
- W2892038686 cites W2158118671 @default.
- W2892038686 cites W2158756518 @default.
- W2892038686 cites W2159292710 @default.
- W2892038686 cites W2159568833 @default.
- W2892038686 cites W2165588550 @default.
- W2892038686 cites W2167205821 @default.
- W2892038686 cites W2178059220 @default.
- W2892038686 cites W2519256734 @default.
- W2892038686 cites W2614464134 @default.
- W2892038686 cites W4235405611 @default.
- W2892038686 doi "https://doi.org/10.2134/agronj2017.11.0664" @default.
- W2892038686 hasPublicationYear "2018" @default.
- W2892038686 type Work @default.
- W2892038686 sameAs 2892038686 @default.
- W2892038686 citedByCount "6" @default.
- W2892038686 countsByYear W28920386862020 @default.
- W2892038686 countsByYear W28920386862021 @default.
- W2892038686 countsByYear W28920386862022 @default.
- W2892038686 crossrefType "journal-article" @default.
- W2892038686 hasAuthorship W2892038686A5044124578 @default.
- W2892038686 hasAuthorship W2892038686A5080026572 @default.
- W2892038686 hasBestOaLocation W28920386861 @default.
- W2892038686 hasConcept C104114177 @default.
- W2892038686 hasConcept C105795698 @default.
- W2892038686 hasConcept C126343540 @default.
- W2892038686 hasConcept C137800194 @default.
- W2892038686 hasConcept C139945424 @default.
- W2892038686 hasConcept C153294291 @default.
- W2892038686 hasConcept C154945302 @default.
- W2892038686 hasConcept C203332170 @default.
- W2892038686 hasConcept C205203396 @default.
- W2892038686 hasConcept C205649164 @default.
- W2892038686 hasConcept C33923547 @default.
- W2892038686 hasConcept C39432304 @default.
- W2892038686 hasConcept C41008148 @default.
- W2892038686 hasConcept C6557445 @default.
- W2892038686 hasConcept C86803240 @default.
- W2892038686 hasConceptScore W2892038686C104114177 @default.
- W2892038686 hasConceptScore W2892038686C105795698 @default.
- W2892038686 hasConceptScore W2892038686C126343540 @default.
- W2892038686 hasConceptScore W2892038686C137800194 @default.
- W2892038686 hasConceptScore W2892038686C139945424 @default.
- W2892038686 hasConceptScore W2892038686C153294291 @default.
- W2892038686 hasConceptScore W2892038686C154945302 @default.
- W2892038686 hasConceptScore W2892038686C203332170 @default.
- W2892038686 hasConceptScore W2892038686C205203396 @default.
- W2892038686 hasConceptScore W2892038686C205649164 @default.
- W2892038686 hasConceptScore W2892038686C33923547 @default.
- W2892038686 hasConceptScore W2892038686C39432304 @default.
- W2892038686 hasConceptScore W2892038686C41008148 @default.
- W2892038686 hasConceptScore W2892038686C6557445 @default.
- W2892038686 hasConceptScore W2892038686C86803240 @default.
- W2892038686 hasFunder F4320306115 @default.
- W2892038686 hasIssue "6" @default.
- W2892038686 hasLocation W28920386861 @default.
- W2892038686 hasOpenAccess W2892038686 @default.
- W2892038686 hasPrimaryLocation W28920386861 @default.
- W2892038686 hasRelatedWork W2042818722 @default.
- W2892038686 hasRelatedWork W2353853281 @default.
- W2892038686 hasRelatedWork W2748952813 @default.
- W2892038686 hasRelatedWork W2774205187 @default.
- W2892038686 hasRelatedWork W2899084033 @default.
- W2892038686 hasRelatedWork W2915279354 @default.
- W2892038686 hasRelatedWork W4205926271 @default.