Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892046589> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W2892046589 abstract "We present examples of systems whose configurational entropy $S_{text{conf}}$ can never reach zero and is instead limited from below by the entropy of mixing $S_{text{mix}}$ of the corresponding ideal gas. We use $S_{text{conf}}$ defined through the local minima of the potential energy landscape, $S_{text{conf}}^{text{PEL}}$. We show that this happens in mean-field models, in collections of hard spheres with infinitesimal polydispersity, and for one-dimensional hard rods. We demonstrate that these results match recent advances in understanding the configurational entropy defined in the free energy landscape, $S_{text{conf}}^{text{FEL}}$. We demonstrate that if $min( S_{text{conf}}^{text{FEL}} ) = 0$, then for an arbitrary system $min( S_{text{conf}}^{text{PEL}} ) = A N + S_{text{mix}}$, where $N$ is the number of particles and $A$ is some constant determined by the interaction potential. We discuss which implications these results have on the Adam--Gibbs (AG) and RFOT relations and show that the latter retain a physically meaningful shape for both configurational entropies, $S_{text{conf}}^{text{FEL}}$ and $S_{text{conf}}^{text{PEL}}$." @default.
- W2892046589 created "2018-09-27" @default.
- W2892046589 creator A5046587705 @default.
- W2892046589 creator A5062575590 @default.
- W2892046589 date "2018-09-06" @default.
- W2892046589 modified "2023-09-27" @default.
- W2892046589 title "Configurational entropy of polydisperse systems can never reach zero" @default.
- W2892046589 hasPublicationYear "2018" @default.
- W2892046589 type Work @default.
- W2892046589 sameAs 2892046589 @default.
- W2892046589 citedByCount "0" @default.
- W2892046589 crossrefType "posted-content" @default.
- W2892046589 hasAuthorship W2892046589A5046587705 @default.
- W2892046589 hasAuthorship W2892046589A5062575590 @default.
- W2892046589 hasConcept C106301342 @default.
- W2892046589 hasConcept C121332964 @default.
- W2892046589 hasConcept C121864883 @default.
- W2892046589 hasConcept C124589349 @default.
- W2892046589 hasConcept C33332235 @default.
- W2892046589 hasConcept C97355855 @default.
- W2892046589 hasConceptScore W2892046589C106301342 @default.
- W2892046589 hasConceptScore W2892046589C121332964 @default.
- W2892046589 hasConceptScore W2892046589C121864883 @default.
- W2892046589 hasConceptScore W2892046589C124589349 @default.
- W2892046589 hasConceptScore W2892046589C33332235 @default.
- W2892046589 hasConceptScore W2892046589C97355855 @default.
- W2892046589 hasLocation W28920465891 @default.
- W2892046589 hasOpenAccess W2892046589 @default.
- W2892046589 hasPrimaryLocation W28920465891 @default.
- W2892046589 hasRelatedWork W1495530933 @default.
- W2892046589 hasRelatedWork W1529365595 @default.
- W2892046589 hasRelatedWork W1553631812 @default.
- W2892046589 hasRelatedWork W1972957781 @default.
- W2892046589 hasRelatedWork W2017960182 @default.
- W2892046589 hasRelatedWork W2050194255 @default.
- W2892046589 hasRelatedWork W2067528639 @default.
- W2892046589 hasRelatedWork W2070726930 @default.
- W2892046589 hasRelatedWork W2073661249 @default.
- W2892046589 hasRelatedWork W2087344102 @default.
- W2892046589 hasRelatedWork W2088048184 @default.
- W2892046589 hasRelatedWork W2225306086 @default.
- W2892046589 hasRelatedWork W2483054527 @default.
- W2892046589 hasRelatedWork W2749063956 @default.
- W2892046589 hasRelatedWork W2901669384 @default.
- W2892046589 hasRelatedWork W2908805805 @default.
- W2892046589 hasRelatedWork W3005866808 @default.
- W2892046589 hasRelatedWork W3100560385 @default.
- W2892046589 hasRelatedWork W3104554061 @default.
- W2892046589 hasRelatedWork W3208816526 @default.
- W2892046589 isParatext "false" @default.
- W2892046589 isRetracted "false" @default.
- W2892046589 magId "2892046589" @default.
- W2892046589 workType "article" @default.