Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892059392> ?p ?o ?g. }
- W2892059392 abstract "Single haze removal is a challenging ill-posed problem. Most existing methods solving this dilemma depend on atmospheric physical scattering model. In other words, they recover haze-free images by estimating the atmospheric transmission. In this paper, we proposed a new recovery model called Residual Adding model, which takes dehazing procedure as a hazy image adding a loss image. Based on this new model, we proposed a single image dehazing network built with Conditional Generative Adversarial Nets (CGAN), called Residual Learning Dehazing Network (RLD-Net). Benefiting from the new model, the RLD-Net is designed as not only an end-to-end dehazing network but also a point-to-point mapping network. That means RLD-Net can take a hazy image as input and a corresponding clear image as output without any extract calculation like inversing atmospheric physical scattering model. Experimental results on both synthesized hazy images and real-world hazy images demonstrate our outstanding performance." @default.
- W2892059392 created "2018-09-27" @default.
- W2892059392 creator A5063717271 @default.
- W2892059392 creator A5077029839 @default.
- W2892059392 date "2018-01-01" @default.
- W2892059392 modified "2023-10-06" @default.
- W2892059392 title "Residual Learning Dehazing Net" @default.
- W2892059392 cites W1457323852 @default.
- W2892059392 cites W1644402181 @default.
- W2892059392 cites W2003709967 @default.
- W2892059392 cites W2091089627 @default.
- W2892059392 cites W2097900287 @default.
- W2892059392 cites W2099712288 @default.
- W2892059392 cites W2104974755 @default.
- W2892059392 cites W2114867966 @default.
- W2892059392 cites W2128254161 @default.
- W2892059392 cites W2137974653 @default.
- W2892059392 cites W2147318913 @default.
- W2892059392 cites W2156936307 @default.
- W2892059392 cites W2256362396 @default.
- W2892059392 cites W2519481857 @default.
- W2892059392 cites W2526428212 @default.
- W2892059392 cites W2536722097 @default.
- W2892059392 cites W2586716774 @default.
- W2892059392 cites W2607323999 @default.
- W2892059392 cites W2779176852 @default.
- W2892059392 cites W4252054347 @default.
- W2892059392 doi "https://doi.org/10.1007/978-3-030-00776-8_13" @default.
- W2892059392 hasPublicationYear "2018" @default.
- W2892059392 type Work @default.
- W2892059392 sameAs 2892059392 @default.
- W2892059392 citedByCount "0" @default.
- W2892059392 crossrefType "book-chapter" @default.
- W2892059392 hasAuthorship W2892059392A5063717271 @default.
- W2892059392 hasAuthorship W2892059392A5077029839 @default.
- W2892059392 hasConcept C106430172 @default.
- W2892059392 hasConcept C111368507 @default.
- W2892059392 hasConcept C11413529 @default.
- W2892059392 hasConcept C115961682 @default.
- W2892059392 hasConcept C118365302 @default.
- W2892059392 hasConcept C121332964 @default.
- W2892059392 hasConcept C127313418 @default.
- W2892059392 hasConcept C14166107 @default.
- W2892059392 hasConcept C153294291 @default.
- W2892059392 hasConcept C154945302 @default.
- W2892059392 hasConcept C155512373 @default.
- W2892059392 hasConcept C160633673 @default.
- W2892059392 hasConcept C2524010 @default.
- W2892059392 hasConcept C28719098 @default.
- W2892059392 hasConcept C31972630 @default.
- W2892059392 hasConcept C33923547 @default.
- W2892059392 hasConcept C41008148 @default.
- W2892059392 hasConcept C761482 @default.
- W2892059392 hasConcept C76155785 @default.
- W2892059392 hasConcept C79974267 @default.
- W2892059392 hasConcept C9417928 @default.
- W2892059392 hasConceptScore W2892059392C106430172 @default.
- W2892059392 hasConceptScore W2892059392C111368507 @default.
- W2892059392 hasConceptScore W2892059392C11413529 @default.
- W2892059392 hasConceptScore W2892059392C115961682 @default.
- W2892059392 hasConceptScore W2892059392C118365302 @default.
- W2892059392 hasConceptScore W2892059392C121332964 @default.
- W2892059392 hasConceptScore W2892059392C127313418 @default.
- W2892059392 hasConceptScore W2892059392C14166107 @default.
- W2892059392 hasConceptScore W2892059392C153294291 @default.
- W2892059392 hasConceptScore W2892059392C154945302 @default.
- W2892059392 hasConceptScore W2892059392C155512373 @default.
- W2892059392 hasConceptScore W2892059392C160633673 @default.
- W2892059392 hasConceptScore W2892059392C2524010 @default.
- W2892059392 hasConceptScore W2892059392C28719098 @default.
- W2892059392 hasConceptScore W2892059392C31972630 @default.
- W2892059392 hasConceptScore W2892059392C33923547 @default.
- W2892059392 hasConceptScore W2892059392C41008148 @default.
- W2892059392 hasConceptScore W2892059392C761482 @default.
- W2892059392 hasConceptScore W2892059392C76155785 @default.
- W2892059392 hasConceptScore W2892059392C79974267 @default.
- W2892059392 hasConceptScore W2892059392C9417928 @default.
- W2892059392 hasLocation W28920593921 @default.
- W2892059392 hasOpenAccess W2892059392 @default.
- W2892059392 hasPrimaryLocation W28920593921 @default.
- W2892059392 hasRelatedWork W1620656115 @default.
- W2892059392 hasRelatedWork W2287129901 @default.
- W2892059392 hasRelatedWork W2602900429 @default.
- W2892059392 hasRelatedWork W2767248074 @default.
- W2892059392 hasRelatedWork W2809980286 @default.
- W2892059392 hasRelatedWork W2945111379 @default.
- W2892059392 hasRelatedWork W2983610293 @default.
- W2892059392 hasRelatedWork W2999108713 @default.
- W2892059392 hasRelatedWork W2999200628 @default.
- W2892059392 hasRelatedWork W3013288104 @default.
- W2892059392 hasRelatedWork W3013569906 @default.
- W2892059392 hasRelatedWork W3034331889 @default.
- W2892059392 hasRelatedWork W3042148526 @default.
- W2892059392 hasRelatedWork W3084926680 @default.
- W2892059392 hasRelatedWork W3105853701 @default.
- W2892059392 hasRelatedWork W3121510409 @default.
- W2892059392 hasRelatedWork W3122340446 @default.
- W2892059392 hasRelatedWork W3130976586 @default.
- W2892059392 hasRelatedWork W3136212406 @default.
- W2892059392 hasRelatedWork W3154585687 @default.