Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892064356> ?p ?o ?g. }
- W2892064356 endingPage "757" @default.
- W2892064356 startingPage "744" @default.
- W2892064356 abstract "Extreme heat events have serious effects on human daily life. Accurately capturing the dynamic variance of extreme high-temperature distributions in a timely manner is the basis for analyzing the potential impacts of extreme heat, thereby informing risk prevention strategies. This paper demonstrates the potential application of multiple source remote sensing data in mapping and monitoring the extreme heat events that occurred on Aug. 8, 2013 in Jiangsu Province, China. In combination with MODIS products, the thermal sharpening (TsHARP) method and a binary linear model are compared to downscale the original daytime FengYun 2F (FY-2F) land surface temperature (LST) imagery, with a temporal resolution of 60 min, from 5 km to 1 km. Using the meteorological measurement data from Nanjing station as the reference, the research then estimates the instantaneous air temperature by using an iterative computation based on the Surface Energy Balance Algorithm for Land (SEBAL), which is used to analyze the spatio-temporal air temperature variance. The results show that the root mean square error (RMSE) of the LST downscaled from the binary linear model is 1.30°C compared to the synchronous MODIS LST, and on this basis the estimated air temperature has the RMSE of 1.78°C. The spatial and temporal distribution of air temperature variance at each geographical location from 06:30 to 18:30 can be accurately determined, and indicates that the high temperature gradually increases and expands from the city center. For the spatial distribution, the air temperature and the defined scorching temperature proportion index increase from northern to middle, to southern part of Jiangsu, and are slightly lower in the eastern area near the Yellow Sea. In terms of temporal characteristics, the percentage of area with air temperature above 37°C in each city increase with time after 10:30 and reach the peak value at 14:30 or 15:30. Then, they decrease gradually, and the rising and falling trends become smaller from the southern cities to the northern regions. Moreover, there is a distinct positive relationship between the percentage of area above 37°C and the population density. The above results show that the spatio-temporal distributions of heat waves and their influencing factors can be determined by combining multiple sources of remotely sensed image data." @default.
- W2892064356 created "2018-09-27" @default.
- W2892064356 creator A5014282682 @default.
- W2892064356 creator A5018629363 @default.
- W2892064356 creator A5022802322 @default.
- W2892064356 creator A5053123774 @default.
- W2892064356 creator A5056820321 @default.
- W2892064356 creator A5067757312 @default.
- W2892064356 date "2018-09-06" @default.
- W2892064356 modified "2023-09-22" @default.
- W2892064356 title "Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data" @default.
- W2892064356 cites W1971429875 @default.
- W2892064356 cites W1990330790 @default.
- W2892064356 cites W1994508789 @default.
- W2892064356 cites W1996026604 @default.
- W2892064356 cites W1998079645 @default.
- W2892064356 cites W2014630223 @default.
- W2892064356 cites W2014711179 @default.
- W2892064356 cites W2020048454 @default.
- W2892064356 cites W2023995258 @default.
- W2892064356 cites W2030095336 @default.
- W2892064356 cites W2041570083 @default.
- W2892064356 cites W2044609898 @default.
- W2892064356 cites W2049377387 @default.
- W2892064356 cites W2049889660 @default.
- W2892064356 cites W2068371905 @default.
- W2892064356 cites W2069642449 @default.
- W2892064356 cites W2074913690 @default.
- W2892064356 cites W2089161494 @default.
- W2892064356 cites W2097467169 @default.
- W2892064356 cites W2114548451 @default.
- W2892064356 cites W2130615363 @default.
- W2892064356 cites W2147521062 @default.
- W2892064356 cites W2163117137 @default.
- W2892064356 cites W2169278316 @default.
- W2892064356 cites W2170308915 @default.
- W2892064356 cites W2326959468 @default.
- W2892064356 cites W2624343786 @default.
- W2892064356 cites W2752612178 @default.
- W2892064356 cites W2756193330 @default.
- W2892064356 cites W304914441 @default.
- W2892064356 cites W790476417 @default.
- W2892064356 doi "https://doi.org/10.1007/s11769-018-0989-8" @default.
- W2892064356 hasPublicationYear "2018" @default.
- W2892064356 type Work @default.
- W2892064356 sameAs 2892064356 @default.
- W2892064356 citedByCount "9" @default.
- W2892064356 countsByYear W28920643562019 @default.
- W2892064356 countsByYear W28920643562020 @default.
- W2892064356 countsByYear W28920643562022 @default.
- W2892064356 countsByYear W28920643562023 @default.
- W2892064356 crossrefType "journal-article" @default.
- W2892064356 hasAuthorship W2892064356A5014282682 @default.
- W2892064356 hasAuthorship W2892064356A5018629363 @default.
- W2892064356 hasAuthorship W2892064356A5022802322 @default.
- W2892064356 hasAuthorship W2892064356A5053123774 @default.
- W2892064356 hasAuthorship W2892064356A5056820321 @default.
- W2892064356 hasAuthorship W2892064356A5067757312 @default.
- W2892064356 hasBestOaLocation W28920643562 @default.
- W2892064356 hasConcept C105795698 @default.
- W2892064356 hasConcept C119666444 @default.
- W2892064356 hasConcept C121332964 @default.
- W2892064356 hasConcept C121955636 @default.
- W2892064356 hasConcept C127313418 @default.
- W2892064356 hasConcept C139945424 @default.
- W2892064356 hasConcept C144133560 @default.
- W2892064356 hasConcept C153294291 @default.
- W2892064356 hasConcept C196083921 @default.
- W2892064356 hasConcept C205649164 @default.
- W2892064356 hasConcept C2524010 @default.
- W2892064356 hasConcept C2777016058 @default.
- W2892064356 hasConcept C33923547 @default.
- W2892064356 hasConcept C37054046 @default.
- W2892064356 hasConcept C39432304 @default.
- W2892064356 hasConcept C49204034 @default.
- W2892064356 hasConcept C62520636 @default.
- W2892064356 hasConcept C62649853 @default.
- W2892064356 hasConceptScore W2892064356C105795698 @default.
- W2892064356 hasConceptScore W2892064356C119666444 @default.
- W2892064356 hasConceptScore W2892064356C121332964 @default.
- W2892064356 hasConceptScore W2892064356C121955636 @default.
- W2892064356 hasConceptScore W2892064356C127313418 @default.
- W2892064356 hasConceptScore W2892064356C139945424 @default.
- W2892064356 hasConceptScore W2892064356C144133560 @default.
- W2892064356 hasConceptScore W2892064356C153294291 @default.
- W2892064356 hasConceptScore W2892064356C196083921 @default.
- W2892064356 hasConceptScore W2892064356C205649164 @default.
- W2892064356 hasConceptScore W2892064356C2524010 @default.
- W2892064356 hasConceptScore W2892064356C2777016058 @default.
- W2892064356 hasConceptScore W2892064356C33923547 @default.
- W2892064356 hasConceptScore W2892064356C37054046 @default.
- W2892064356 hasConceptScore W2892064356C39432304 @default.
- W2892064356 hasConceptScore W2892064356C49204034 @default.
- W2892064356 hasConceptScore W2892064356C62520636 @default.
- W2892064356 hasConceptScore W2892064356C62649853 @default.
- W2892064356 hasIssue "5" @default.
- W2892064356 hasLocation W28920643561 @default.
- W2892064356 hasLocation W28920643562 @default.