Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892065648> ?p ?o ?g. }
- W2892065648 endingPage "52597" @default.
- W2892065648 startingPage "52582" @default.
- W2892065648 abstract "In this paper, the 2000-2010 earthquake catalogue with a Richter magnitude (ML) of 5 and a depth of 300 km in the study region, located at 21°-26° N and 119°-123° E, was used as a training data to construct an initial earthquake Richter magnitude (ML) prediction backpropagation neural network (first IEMPBPNN) model with two hidden layers. By using final weights and biases of IEMPBPNN as initials for an embedded earthquake Richter magnitude (ML) prediction backpropagation neural network (EEMPBPNN) from the 1990-1999 and 2011-2014 earthquake catalogues (ML ≥ 5 and depth ≤ 300 km) for the same region, the IEMPBPNN was updated to EEMPBPNN with 10 neurons in each hidden layer. The predicted Richter magnitude (ML) errors could be reduced with EEMPBPNN, and the data from 2000 to 2010 as the outside test and data from 2011 to 2014 as the inside test were compared with the predicted Richter magnitude (ML) under the EEMPBPNN model, which exhibited high accuracy due to the lower standard deviation (SDV), lower mean squared error (mse), and higher correlation coefficient. The accuracy of the second IEMPBPNN, as trained with the 1990-2014 earthquake catalogue under the same proceeding of the first IEMPBPNN, could not be improved with the accuracy of EEMPBPNN. Moreover, the training process of the second IEMPBPNN consumed significant computing time due to massive amount of training data. In predicting the Richter magnitudes of five earthquakes in 2016 and 2018 (TST), lower SDV, lower mse, and higher correlation coefficients were illustrated with reliable prediction accuracy using EEMPBPNN. The objective of this procedure was to determine the neuronal number in each hidden layer using the earthquake catalogue and the slip rate of the Philippine Sea Plate related to the Eurasian plate as the training data, where the number of neurons has not been determined by the training data in previous works." @default.
- W2892065648 created "2018-09-27" @default.
- W2892065648 creator A5022989941 @default.
- W2892065648 creator A5025625132 @default.
- W2892065648 creator A5080392236 @default.
- W2892065648 date "2018-01-01" @default.
- W2892065648 modified "2023-10-01" @default.
- W2892065648 title "Determining Neuronal Number in Each Hidden Layer Using Earthquake Catalogues as Training Data in Training an Embedded Back Propagation Neural Network for Predicting Earthquake Magnitude" @default.
- W2892065648 cites W1498436455 @default.
- W2892065648 cites W1513335440 @default.
- W2892065648 cites W1635432653 @default.
- W2892065648 cites W1828563792 @default.
- W2892065648 cites W1956217412 @default.
- W2892065648 cites W1967373784 @default.
- W2892065648 cites W1969598479 @default.
- W2892065648 cites W1985473060 @default.
- W2892065648 cites W1989906353 @default.
- W2892065648 cites W1991191639 @default.
- W2892065648 cites W1993912260 @default.
- W2892065648 cites W2002096058 @default.
- W2892065648 cites W2007480540 @default.
- W2892065648 cites W2007682514 @default.
- W2892065648 cites W2009317410 @default.
- W2892065648 cites W2020516950 @default.
- W2892065648 cites W2023843497 @default.
- W2892065648 cites W2024066033 @default.
- W2892065648 cites W2028307749 @default.
- W2892065648 cites W2035077498 @default.
- W2892065648 cites W2045627460 @default.
- W2892065648 cites W2047947965 @default.
- W2892065648 cites W2063395121 @default.
- W2892065648 cites W2064758233 @default.
- W2892065648 cites W2075154865 @default.
- W2892065648 cites W2078376347 @default.
- W2892065648 cites W2080906426 @default.
- W2892065648 cites W2082850205 @default.
- W2892065648 cites W2089457255 @default.
- W2892065648 cites W2090503999 @default.
- W2892065648 cites W2090983994 @default.
- W2892065648 cites W2097251951 @default.
- W2892065648 cites W2106160184 @default.
- W2892065648 cites W2108690432 @default.
- W2892065648 cites W2109946436 @default.
- W2892065648 cites W2110492944 @default.
- W2892065648 cites W2113163803 @default.
- W2892065648 cites W2113824593 @default.
- W2892065648 cites W2132600955 @default.
- W2892065648 cites W2143554369 @default.
- W2892065648 cites W2148472232 @default.
- W2892065648 cites W2151289207 @default.
- W2892065648 cites W2169519990 @default.
- W2892065648 cites W2171086324 @default.
- W2892065648 cites W2256517681 @default.
- W2892065648 cites W2289629218 @default.
- W2892065648 cites W2292057472 @default.
- W2892065648 cites W2302248051 @default.
- W2892065648 cites W2321336637 @default.
- W2892065648 cites W2331995259 @default.
- W2892065648 cites W2470591159 @default.
- W2892065648 cites W2487770199 @default.
- W2892065648 cites W2510282576 @default.
- W2892065648 cites W2511742550 @default.
- W2892065648 cites W2541794126 @default.
- W2892065648 cites W2566406820 @default.
- W2892065648 cites W2599839912 @default.
- W2892065648 cites W2751279150 @default.
- W2892065648 cites W2765682674 @default.
- W2892065648 cites W2772920448 @default.
- W2892065648 cites W2779697276 @default.
- W2892065648 cites W2792799405 @default.
- W2892065648 cites W2794025909 @default.
- W2892065648 cites W2806711281 @default.
- W2892065648 cites W4251663505 @default.
- W2892065648 cites W2067210319 @default.
- W2892065648 doi "https://doi.org/10.1109/access.2018.2870189" @default.
- W2892065648 hasPublicationYear "2018" @default.
- W2892065648 type Work @default.
- W2892065648 sameAs 2892065648 @default.
- W2892065648 citedByCount "19" @default.
- W2892065648 countsByYear W28920656482019 @default.
- W2892065648 countsByYear W28920656482020 @default.
- W2892065648 countsByYear W28920656482021 @default.
- W2892065648 countsByYear W28920656482022 @default.
- W2892065648 countsByYear W28920656482023 @default.
- W2892065648 crossrefType "journal-article" @default.
- W2892065648 hasAuthorship W2892065648A5022989941 @default.
- W2892065648 hasAuthorship W2892065648A5025625132 @default.
- W2892065648 hasAuthorship W2892065648A5080392236 @default.
- W2892065648 hasBestOaLocation W28920656481 @default.
- W2892065648 hasConcept C105795698 @default.
- W2892065648 hasConcept C11097651 @default.
- W2892065648 hasConcept C119857082 @default.
- W2892065648 hasConcept C121332964 @default.
- W2892065648 hasConcept C126691448 @default.
- W2892065648 hasConcept C127313418 @default.
- W2892065648 hasConcept C1276947 @default.
- W2892065648 hasConcept C139945424 @default.
- W2892065648 hasConcept C153180895 @default.