Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892066640> ?p ?o ?g. }
- W2892066640 endingPage "1727" @default.
- W2892066640 startingPage "1715" @default.
- W2892066640 abstract "Abstract. There is broad consensus that wildfire activity is likely to increase in western US forests and woodlands over the next century. Therefore, spatial predictions of the potential for large wildfires have immediate and growing relevance to near- and long-term research, planning, and management objectives. Fuels, climate, weather, and the landscape all exert controls on wildfire occurrence and spread, but the dynamics of these controls vary from daily to decadal timescales. Accurate spatial predictions of large wildfires should therefore strive to integrate across these variables and timescales. Here, we describe a high spatial resolution dataset (250 m pixel) of the probability of large wildfires ( > 405 ha) across forests and woodlands in the contiguous western US, from 2005 to the present. The dataset is automatically updated on a weekly basis using Google Earth Engine and a continuous integration pipeline. Each image in the dataset is the output of a random forest machine-learning algorithm, trained on random samples of historic small and large wildfires and represents the predicted conditional probability of an individual pixel burning in a large fire, given an ignition or fire spread to that pixel. This novel workflow is able to integrate the near-term dynamics of fuels and weather into weekly predictions while also integrating longer-term dynamics of fuels, the climate, and the landscape. As a continually updated product, the dataset can provide operational fire managers with contemporary, on-the-ground information to closely monitor the changing potential for large wildfire occurrence and spread. It can also serve as a foundational dataset for longer-term planning and research, such as the strategic targeting of fuels management, fire-smart development at the wildland–urban interface, and the analysis of trends in wildfire potential over time. Weekly large fire probability GeoTiff products from 2005 to 2017 are archived on the Figshare online digital repository with the DOI https://doi.org/10.6084/m9.figshare.5765967 (available at https://doi.org/10.6084/m9.figshare.5765967.v1). Weekly GeoTiff products and the entire dataset from 2005 onwards are also continually uploaded to a Google Cloud Storage bucket at https://console.cloud.google.com/storage/wffr-preds/V1 (last access: 14 September 2018) and are available free of charge with a Google account. Continually updated products and the long-term archive are also available to registered Google Earth Engine (GEE) users as public GEE assets and can be accessed with the image collection ID users/mgray/wffr-preds within GEE." @default.
- W2892066640 created "2018-09-27" @default.
- W2892066640 creator A5006360510 @default.
- W2892066640 creator A5029584736 @default.
- W2892066640 creator A5081831803 @default.
- W2892066640 date "2018-09-20" @default.
- W2892066640 modified "2023-10-10" @default.
- W2892066640 title "A weekly, continually updated dataset of the probability of large wildfires across western US forests and woodlands" @default.
- W2892066640 cites W1526406472 @default.
- W2892066640 cites W153213878 @default.
- W2892066640 cites W1639413685 @default.
- W2892066640 cites W1829632160 @default.
- W2892066640 cites W1910689100 @default.
- W2892066640 cites W1970580850 @default.
- W2892066640 cites W1971498503 @default.
- W2892066640 cites W1978617972 @default.
- W2892066640 cites W1978816960 @default.
- W2892066640 cites W1981213426 @default.
- W2892066640 cites W1988713966 @default.
- W2892066640 cites W1995047010 @default.
- W2892066640 cites W1996624419 @default.
- W2892066640 cites W1998525406 @default.
- W2892066640 cites W2002403786 @default.
- W2892066640 cites W2017926030 @default.
- W2892066640 cites W2019446850 @default.
- W2892066640 cites W2046463643 @default.
- W2892066640 cites W2052936910 @default.
- W2892066640 cites W2059455952 @default.
- W2892066640 cites W2066350588 @default.
- W2892066640 cites W2074015442 @default.
- W2892066640 cites W2084555690 @default.
- W2892066640 cites W2084744129 @default.
- W2892066640 cites W2084842115 @default.
- W2892066640 cites W2090191602 @default.
- W2892066640 cites W2097553599 @default.
- W2892066640 cites W2105062738 @default.
- W2892066640 cites W2109315200 @default.
- W2892066640 cites W2113410727 @default.
- W2892066640 cites W2114689706 @default.
- W2892066640 cites W2115506886 @default.
- W2892066640 cites W2123505986 @default.
- W2892066640 cites W2126862358 @default.
- W2892066640 cites W2138800506 @default.
- W2892066640 cites W2139086914 @default.
- W2892066640 cites W2144715915 @default.
- W2892066640 cites W2147830447 @default.
- W2892066640 cites W2154823382 @default.
- W2892066640 cites W2156575682 @default.
- W2892066640 cites W2160689515 @default.
- W2892066640 cites W2161548576 @default.
- W2892066640 cites W2161849372 @default.
- W2892066640 cites W2165977355 @default.
- W2892066640 cites W2171370728 @default.
- W2892066640 cites W2191017250 @default.
- W2892066640 cites W2335948735 @default.
- W2892066640 cites W2525188494 @default.
- W2892066640 cites W2530625307 @default.
- W2892066640 cites W2606047346 @default.
- W2892066640 cites W2725897987 @default.
- W2892066640 cites W2740015292 @default.
- W2892066640 cites W2769249101 @default.
- W2892066640 cites W2770865414 @default.
- W2892066640 cites W2772563421 @default.
- W2892066640 cites W2911964244 @default.
- W2892066640 cites W3098105755 @default.
- W2892066640 cites W4232202426 @default.
- W2892066640 cites W4300009529 @default.
- W2892066640 doi "https://doi.org/10.5194/essd-10-1715-2018" @default.
- W2892066640 hasPublicationYear "2018" @default.
- W2892066640 type Work @default.
- W2892066640 sameAs 2892066640 @default.
- W2892066640 citedByCount "9" @default.
- W2892066640 countsByYear W28920666402019 @default.
- W2892066640 countsByYear W28920666402020 @default.
- W2892066640 countsByYear W28920666402021 @default.
- W2892066640 countsByYear W28920666402022 @default.
- W2892066640 countsByYear W28920666402023 @default.
- W2892066640 crossrefType "journal-article" @default.
- W2892066640 hasAuthorship W2892066640A5006360510 @default.
- W2892066640 hasAuthorship W2892066640A5029584736 @default.
- W2892066640 hasAuthorship W2892066640A5081831803 @default.
- W2892066640 hasBestOaLocation W28920666401 @default.
- W2892066640 hasConcept C107826830 @default.
- W2892066640 hasConcept C110872660 @default.
- W2892066640 hasConcept C119857082 @default.
- W2892066640 hasConcept C153294291 @default.
- W2892066640 hasConcept C169258074 @default.
- W2892066640 hasConcept C18903297 @default.
- W2892066640 hasConcept C203174812 @default.
- W2892066640 hasConcept C205649164 @default.
- W2892066640 hasConcept C39432304 @default.
- W2892066640 hasConcept C41008148 @default.
- W2892066640 hasConcept C86803240 @default.
- W2892066640 hasConcept C89736061 @default.
- W2892066640 hasConceptScore W2892066640C107826830 @default.
- W2892066640 hasConceptScore W2892066640C110872660 @default.
- W2892066640 hasConceptScore W2892066640C119857082 @default.
- W2892066640 hasConceptScore W2892066640C153294291 @default.