Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892067359> ?p ?o ?g. }
- W2892067359 abstract "We numerically investigate the characteristics of chaos evolution during wave-packet spreading in two typical one-dimensional nonlinear disordered lattices: the Klein-Gordon system and the discrete nonlinear Schrodinger equation model. Completing previous investigations [Ch. Skokos et al., Phys. Rev. Lett. 111, 064101 (2013)], we verify that chaotic dynamics is slowing down for both the so-called weak and strong chaos dynamical regimes encountered in these systems, without showing any signs of a crossover to regular dynamics. The value of the finite-time maximum Lyapunov exponent $mathrm{ensuremath{Lambda}}$ decays in time $t$ as $mathrm{ensuremath{Lambda}}ensuremath{propto}{t}^{{ensuremath{alpha}}_{mathrm{ensuremath{Lambda}}}}$, with ${ensuremath{alpha}}_{mathrm{ensuremath{Lambda}}}$ being different from the ${ensuremath{alpha}}_{mathrm{ensuremath{Lambda}}}=ensuremath{-}1$ value observed in cases of regular motion. In particular, ${ensuremath{alpha}}_{mathrm{ensuremath{Lambda}}}ensuremath{approx}ensuremath{-}0.25$ (weak chaos) and ${ensuremath{alpha}}_{mathrm{ensuremath{Lambda}}}ensuremath{approx}ensuremath{-}0.3$ (strong chaos) for both models, indicating the dynamical differences of the two regimes and the generality of the underlying chaotic mechanisms. The spatiotemporal evolution of the deviation vector associated with $mathrm{ensuremath{Lambda}}$ reveals the meandering of chaotic seeds inside the wave packet, which is needed for obtaining the chaotization of the lattice's excited part." @default.
- W2892067359 created "2018-09-27" @default.
- W2892067359 creator A5015959804 @default.
- W2892067359 creator A5022834648 @default.
- W2892067359 creator A5060909061 @default.
- W2892067359 date "2018-11-29" @default.
- W2892067359 modified "2023-09-26" @default.
- W2892067359 title "Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices" @default.
- W2892067359 cites W1519313603 @default.
- W2892067359 cites W1533338433 @default.
- W2892067359 cites W1630987006 @default.
- W2892067359 cites W196329725 @default.
- W2892067359 cites W1963687909 @default.
- W2892067359 cites W1970514171 @default.
- W2892067359 cites W1970738437 @default.
- W2892067359 cites W1970947221 @default.
- W2892067359 cites W1976143157 @default.
- W2892067359 cites W1978587886 @default.
- W2892067359 cites W1980003568 @default.
- W2892067359 cites W1987649227 @default.
- W2892067359 cites W1987721846 @default.
- W2892067359 cites W1988870174 @default.
- W2892067359 cites W2000305130 @default.
- W2892067359 cites W2005543681 @default.
- W2892067359 cites W2005797522 @default.
- W2892067359 cites W2008347719 @default.
- W2892067359 cites W2011721894 @default.
- W2892067359 cites W2017977879 @default.
- W2892067359 cites W2018308541 @default.
- W2892067359 cites W2021596146 @default.
- W2892067359 cites W2022323460 @default.
- W2892067359 cites W2025705496 @default.
- W2892067359 cites W2026040809 @default.
- W2892067359 cites W2031446777 @default.
- W2892067359 cites W2033975854 @default.
- W2892067359 cites W2040358363 @default.
- W2892067359 cites W2045539293 @default.
- W2892067359 cites W2048773037 @default.
- W2892067359 cites W2050966866 @default.
- W2892067359 cites W2055585149 @default.
- W2892067359 cites W2056389170 @default.
- W2892067359 cites W2056405169 @default.
- W2892067359 cites W2056846295 @default.
- W2892067359 cites W2072998188 @default.
- W2892067359 cites W2077244024 @default.
- W2892067359 cites W2091702216 @default.
- W2892067359 cites W2095485037 @default.
- W2892067359 cites W2115411720 @default.
- W2892067359 cites W2116162866 @default.
- W2892067359 cites W2123835135 @default.
- W2892067359 cites W2127143993 @default.
- W2892067359 cites W2134813683 @default.
- W2892067359 cites W2136397713 @default.
- W2892067359 cites W2152640683 @default.
- W2892067359 cites W2155224358 @default.
- W2892067359 cites W2164715205 @default.
- W2892067359 cites W2167107473 @default.
- W2892067359 cites W2224647648 @default.
- W2892067359 cites W2264002775 @default.
- W2892067359 cites W2463739309 @default.
- W2892067359 cites W2529457452 @default.
- W2892067359 cites W2614519033 @default.
- W2892067359 cites W2735417272 @default.
- W2892067359 cites W2779506353 @default.
- W2892067359 cites W2962944492 @default.
- W2892067359 cites W2964127073 @default.
- W2892067359 cites W3098141883 @default.
- W2892067359 cites W3098336662 @default.
- W2892067359 cites W3099422532 @default.
- W2892067359 cites W3100144523 @default.
- W2892067359 cites W3100502670 @default.
- W2892067359 cites W3101339948 @default.
- W2892067359 cites W3101703694 @default.
- W2892067359 cites W3104402853 @default.
- W2892067359 cites W3105301400 @default.
- W2892067359 cites W3106495467 @default.
- W2892067359 doi "https://doi.org/10.1103/physreve.98.052229" @default.
- W2892067359 hasPublicationYear "2018" @default.
- W2892067359 type Work @default.
- W2892067359 sameAs 2892067359 @default.
- W2892067359 citedByCount "27" @default.
- W2892067359 countsByYear W28920673592019 @default.
- W2892067359 countsByYear W28920673592020 @default.
- W2892067359 countsByYear W28920673592021 @default.
- W2892067359 countsByYear W28920673592022 @default.
- W2892067359 countsByYear W28920673592023 @default.
- W2892067359 crossrefType "journal-article" @default.
- W2892067359 hasAuthorship W2892067359A5015959804 @default.
- W2892067359 hasAuthorship W2892067359A5022834648 @default.
- W2892067359 hasAuthorship W2892067359A5060909061 @default.
- W2892067359 hasBestOaLocation W28920673592 @default.
- W2892067359 hasConcept C106978608 @default.
- W2892067359 hasConcept C121332964 @default.
- W2892067359 hasConcept C138885662 @default.
- W2892067359 hasConcept C158622935 @default.
- W2892067359 hasConcept C191544260 @default.
- W2892067359 hasConcept C24890656 @default.
- W2892067359 hasConcept C2778113609 @default.
- W2892067359 hasConcept C2780388253 @default.
- W2892067359 hasConcept C2781204021 @default.