Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892071465> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2892071465 abstract "Affect recognition is an important component towards the better interaction between human and machines. Applications of emotion recognition in speech can be found in several areas such as human computer interaction and call centres. In recent years, Deep Neural Networks (DNN) have been used with great success in recognizing emotions. In this paper, we present a new model for continuous emotion recognition from speech. Our model, which was trained end-to-end, is comprised of a Convolutional Neural Network (CNN), which extracts features from the raw signal, and stacked on top of it a 2-layer Long Short-Term Memory (LSTM), so as to consider the contextual information in the data. Our model significantly outperforms, in terms of concordance correlation coefficient, the state-of-the-art methods for the RECOLA database." @default.
- W2892071465 created "2018-09-27" @default.
- W2892071465 creator A5019651318 @default.
- W2892071465 creator A5041065502 @default.
- W2892071465 creator A5045277971 @default.
- W2892071465 date "2018-04-01" @default.
- W2892071465 modified "2023-10-12" @default.
- W2892071465 title "End-to-End Speech Emotion Recognition Using Deep Neural Networks" @default.
- W2892071465 cites W1600744878 @default.
- W2892071465 cites W1785074626 @default.
- W2892071465 cites W2059652044 @default.
- W2892071465 cites W2072803611 @default.
- W2892071465 cites W2099767163 @default.
- W2892071465 cites W2149628368 @default.
- W2892071465 cites W2346454595 @default.
- W2892071465 cites W2399733683 @default.
- W2892071465 cites W2518110751 @default.
- W2892071465 cites W2610961739 @default.
- W2892071465 cites W2915606245 @default.
- W2892071465 doi "https://doi.org/10.1109/icassp.2018.8462677" @default.
- W2892071465 hasPublicationYear "2018" @default.
- W2892071465 type Work @default.
- W2892071465 sameAs 2892071465 @default.
- W2892071465 citedByCount "142" @default.
- W2892071465 countsByYear W28920714652018 @default.
- W2892071465 countsByYear W28920714652019 @default.
- W2892071465 countsByYear W28920714652020 @default.
- W2892071465 countsByYear W28920714652021 @default.
- W2892071465 countsByYear W28920714652022 @default.
- W2892071465 countsByYear W28920714652023 @default.
- W2892071465 crossrefType "proceedings-article" @default.
- W2892071465 hasAuthorship W2892071465A5019651318 @default.
- W2892071465 hasAuthorship W2892071465A5041065502 @default.
- W2892071465 hasAuthorship W2892071465A5045277971 @default.
- W2892071465 hasBestOaLocation W28920714652 @default.
- W2892071465 hasConcept C105795698 @default.
- W2892071465 hasConcept C108583219 @default.
- W2892071465 hasConcept C147168706 @default.
- W2892071465 hasConcept C153180895 @default.
- W2892071465 hasConcept C154945302 @default.
- W2892071465 hasConcept C175202392 @default.
- W2892071465 hasConcept C2777438025 @default.
- W2892071465 hasConcept C2781059462 @default.
- W2892071465 hasConcept C28490314 @default.
- W2892071465 hasConcept C33923547 @default.
- W2892071465 hasConcept C41008148 @default.
- W2892071465 hasConcept C50644808 @default.
- W2892071465 hasConcept C74296488 @default.
- W2892071465 hasConcept C81363708 @default.
- W2892071465 hasConceptScore W2892071465C105795698 @default.
- W2892071465 hasConceptScore W2892071465C108583219 @default.
- W2892071465 hasConceptScore W2892071465C147168706 @default.
- W2892071465 hasConceptScore W2892071465C153180895 @default.
- W2892071465 hasConceptScore W2892071465C154945302 @default.
- W2892071465 hasConceptScore W2892071465C175202392 @default.
- W2892071465 hasConceptScore W2892071465C2777438025 @default.
- W2892071465 hasConceptScore W2892071465C2781059462 @default.
- W2892071465 hasConceptScore W2892071465C28490314 @default.
- W2892071465 hasConceptScore W2892071465C33923547 @default.
- W2892071465 hasConceptScore W2892071465C41008148 @default.
- W2892071465 hasConceptScore W2892071465C50644808 @default.
- W2892071465 hasConceptScore W2892071465C74296488 @default.
- W2892071465 hasConceptScore W2892071465C81363708 @default.
- W2892071465 hasLocation W28920714651 @default.
- W2892071465 hasLocation W28920714652 @default.
- W2892071465 hasOpenAccess W2892071465 @default.
- W2892071465 hasPrimaryLocation W28920714651 @default.
- W2892071465 hasRelatedWork W2312116756 @default.
- W2892071465 hasRelatedWork W2386387936 @default.
- W2892071465 hasRelatedWork W2898004252 @default.
- W2892071465 hasRelatedWork W2946073932 @default.
- W2892071465 hasRelatedWork W3071356955 @default.
- W2892071465 hasRelatedWork W3076928706 @default.
- W2892071465 hasRelatedWork W3089981511 @default.
- W2892071465 hasRelatedWork W3096147072 @default.
- W2892071465 hasRelatedWork W3096784008 @default.
- W2892071465 hasRelatedWork W4286955511 @default.
- W2892071465 isParatext "false" @default.
- W2892071465 isRetracted "false" @default.
- W2892071465 magId "2892071465" @default.
- W2892071465 workType "article" @default.