Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892073004> ?p ?o ?g. }
- W2892073004 endingPage "e6405" @default.
- W2892073004 startingPage "e6405" @default.
- W2892073004 abstract "Tree species classification using hyperspectral imagery is a challenging task due to the high spectral similarity between species and large intra-species variability. This paper proposes a solution using the Multiple Instance Adaptive Cosine Estimator (MI-ACE) algorithm. MI-ACE estimates a discriminative target signature to differentiate between a pair of tree species while accounting for label uncertainty. Multi-class species classification is achieved by training a set of one-vs-one MI-ACE classifiers corresponding to the classification between each pair of tree species and a majority voting on the classification results from all classifiers. Additionally, the performance of MI-ACE does not rely on parameter settings that require tuning resulting in a method that is easy to use in application. Results presented are using training and testing data provided by a data analysis competition aimed at encouraging the development of methods for extracting ecological information through remote sensing obtained through participation in the competition. The experimental results using one-vs-one MI-ACE technique composed of a hierarchical classification, where a tree crown is first classified to one of the genus classes and one of the species classes. The species-level rank-1 classification accuracy is 86.4% and cross entropy is 0.9395 on the testing data, provided by the competition organizer, without the release of ground truth for testing data. Similarly, the same evaluation metrics are computed on the training data, where the rank-1 classification accuracy is 95.62% and the cross entropy is 0.2649. The results show that the presented approach can not only classify the majority species classes, but also classify the rare species classes." @default.
- W2892073004 created "2018-09-27" @default.
- W2892073004 creator A5057277525 @default.
- W2892073004 creator A5069882292 @default.
- W2892073004 creator A5079676776 @default.
- W2892073004 date "2019-02-28" @default.
- W2892073004 modified "2023-10-16" @default.
- W2892073004 title "Hyperspectral tree crown classification using the multiple instance adaptive cosine estimator" @default.
- W2892073004 cites W1971358070 @default.
- W2892073004 cites W1973176871 @default.
- W2892073004 cites W2014690245 @default.
- W2892073004 cites W2021730425 @default.
- W2892073004 cites W2029334557 @default.
- W2892073004 cites W2037328426 @default.
- W2892073004 cites W2096972831 @default.
- W2892073004 cites W2107919956 @default.
- W2892073004 cites W2110119381 @default.
- W2892073004 cites W2127152713 @default.
- W2892073004 cites W2149471024 @default.
- W2892073004 cites W2158400785 @default.
- W2892073004 cites W2163886442 @default.
- W2892073004 cites W2166682552 @default.
- W2892073004 cites W2168332395 @default.
- W2892073004 cites W2169535263 @default.
- W2892073004 cites W2756635220 @default.
- W2892073004 cites W2806389936 @default.
- W2892073004 cites W2806512322 @default.
- W2892073004 cites W2807573627 @default.
- W2892073004 cites W2810426430 @default.
- W2892073004 cites W4235485235 @default.
- W2892073004 cites W4236137412 @default.
- W2892073004 cites W4237273938 @default.
- W2892073004 cites W4239497108 @default.
- W2892073004 doi "https://doi.org/10.7717/peerj.6405" @default.
- W2892073004 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6397761" @default.
- W2892073004 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30842896" @default.
- W2892073004 hasPublicationYear "2019" @default.
- W2892073004 type Work @default.
- W2892073004 sameAs 2892073004 @default.
- W2892073004 citedByCount "5" @default.
- W2892073004 countsByYear W28920730042021 @default.
- W2892073004 countsByYear W28920730042022 @default.
- W2892073004 crossrefType "journal-article" @default.
- W2892073004 hasAuthorship W2892073004A5057277525 @default.
- W2892073004 hasAuthorship W2892073004A5069882292 @default.
- W2892073004 hasAuthorship W2892073004A5079676776 @default.
- W2892073004 hasBestOaLocation W28920730041 @default.
- W2892073004 hasConcept C105795698 @default.
- W2892073004 hasConcept C106301342 @default.
- W2892073004 hasConcept C113174947 @default.
- W2892073004 hasConcept C121332964 @default.
- W2892073004 hasConcept C134306372 @default.
- W2892073004 hasConcept C153180895 @default.
- W2892073004 hasConcept C153668964 @default.
- W2892073004 hasConcept C154945302 @default.
- W2892073004 hasConcept C159078339 @default.
- W2892073004 hasConcept C185429906 @default.
- W2892073004 hasConcept C2780762811 @default.
- W2892073004 hasConcept C33923547 @default.
- W2892073004 hasConcept C41008148 @default.
- W2892073004 hasConcept C62520636 @default.
- W2892073004 hasConcept C97931131 @default.
- W2892073004 hasConceptScore W2892073004C105795698 @default.
- W2892073004 hasConceptScore W2892073004C106301342 @default.
- W2892073004 hasConceptScore W2892073004C113174947 @default.
- W2892073004 hasConceptScore W2892073004C121332964 @default.
- W2892073004 hasConceptScore W2892073004C134306372 @default.
- W2892073004 hasConceptScore W2892073004C153180895 @default.
- W2892073004 hasConceptScore W2892073004C153668964 @default.
- W2892073004 hasConceptScore W2892073004C154945302 @default.
- W2892073004 hasConceptScore W2892073004C159078339 @default.
- W2892073004 hasConceptScore W2892073004C185429906 @default.
- W2892073004 hasConceptScore W2892073004C2780762811 @default.
- W2892073004 hasConceptScore W2892073004C33923547 @default.
- W2892073004 hasConceptScore W2892073004C41008148 @default.
- W2892073004 hasConceptScore W2892073004C62520636 @default.
- W2892073004 hasConceptScore W2892073004C97931131 @default.
- W2892073004 hasFunder F4320306250 @default.
- W2892073004 hasLocation W28920730041 @default.
- W2892073004 hasLocation W28920730042 @default.
- W2892073004 hasLocation W28920730043 @default.
- W2892073004 hasLocation W28920730044 @default.
- W2892073004 hasOpenAccess W2892073004 @default.
- W2892073004 hasPrimaryLocation W28920730041 @default.
- W2892073004 hasRelatedWork W2019190440 @default.
- W2892073004 hasRelatedWork W2027399350 @default.
- W2892073004 hasRelatedWork W2044184146 @default.
- W2892073004 hasRelatedWork W2060875994 @default.
- W2892073004 hasRelatedWork W2070598848 @default.
- W2892073004 hasRelatedWork W2072166414 @default.
- W2892073004 hasRelatedWork W2619127353 @default.
- W2892073004 hasRelatedWork W2781940762 @default.
- W2892073004 hasRelatedWork W3034375524 @default.
- W2892073004 hasRelatedWork W3209970181 @default.
- W2892073004 hasVolume "7" @default.
- W2892073004 isParatext "false" @default.
- W2892073004 isRetracted "false" @default.
- W2892073004 magId "2892073004" @default.