Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892076817> ?p ?o ?g. }
- W2892076817 endingPage "3486.e4" @default.
- W2892076817 startingPage "3481" @default.
- W2892076817 abstract "After its uptake into the cytosol, intracellular glucose is phosphorylated to glucose-6-phosphate (G6P), trapping it within the cell and preparing it for metabolism. In glucose-exporting tissues, like liver, G6P is transported into the ER, where it is dephosphorylated by G6Pase-α. The glucose is then returned to the cytosol for export [1Bali D.S. Chen Y.-T. Austin S. Goldstein J.L. Glycogen storage disease type I.in: Adam M. Ardinger H. Pagon R.A. GeneReviews. University of Washington, 1993: 1-22Google Scholar, 2Csala M. Marcolongo P. Lizák B. Senesi S. Margittai E. Fulceri R. Magyar J.E. Benedetti A. Bánhegyi G. Transport and transporters in the endoplasmic reticulum.Biochim. Biophys. Acta. 2007; 1768: 1325-1341Crossref PubMed Scopus (41) Google Scholar]. Defects in these pathways cause glycogen storage diseases [1Bali D.S. Chen Y.-T. Austin S. Goldstein J.L. Glycogen storage disease type I.in: Adam M. Ardinger H. Pagon R.A. GeneReviews. University of Washington, 1993: 1-22Google Scholar]. G6Pase-β, an isozyme of G6Pase-α, is widely expressed [3Martin C.C. Oeser J.K. Svitek C.A. Hunter S.I. Hutton J.C. O’Brien R.M. Identification and characterization of a human cDNA and gene encoding a ubiquitously expressed glucose-6-phosphatase catalytic subunit-related protein.J. Mol. Endocrinol. 2002; 29: 205-222Crossref PubMed Scopus (72) Google Scholar, 4Guionie O. Clottes E. Stafford K. Burchell A. Identification and characterisation of a new human glucose-6-phosphatase isoform.FEBS Lett. 2003; 551: 159-164Crossref PubMed Scopus (60) Google Scholar]. Its role in cells that do not export glucose is unclear, although mutations in G6Pase-β cause severe and widespread abnormalities [5Boztug K. Appaswamy G. Ashikov A. Schäffer A.A. Salzer U. Diestelhorst J. Germeshausen M. Brandes G. Lee-Gossler J. Noyan F. et al.A syndrome with congenital neutropenia and mutations in G6PC3.N. Engl. J. Med. 2009; 360: 32-43Crossref PubMed Scopus (280) Google Scholar, 6Boztug K. Rosenberg P.S. Dorda M. Banka S. Moulton T. Curtin J. Rezaei N. Corns J. Innis J.W. Avci Z. et al.Extended spectrum of human glucose-6-phosphatase catalytic subunit 3 deficiency: Novel genotypes and phenotypic variability in severe congenital neutropenia.J. Pediatr. 2012; 160: 679-683.e2Abstract Full Text Full Text PDF PubMed Scopus (60) Google Scholar, 7Desplantes C. Fremond M.L. Beaupain B. Harousseau J.L. Buzyn A. Pellier I. Roques G. Morville P. Paillard C. Bruneau J. et al.Clinical spectrum and long-term follow-up of 14 cases with G6PC3 mutations from the French Severe Congenital Neutropenia Registry.Orphanet J. Rare Dis. 2014; 9: 183Crossref PubMed Scopus (38) Google Scholar]. Astrocytes, the most abundant cells in the brain, provide metabolic support to neurons, facilitated by astrocytic endfeet that contact blood capillaries or neurons [8Kacem K. Lacombe P. Seylaz J. Bonvento G. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: A confocal microscopy study.Glia. 1998; 23: 1-10Crossref PubMed Scopus (277) Google Scholar, 9Mathiisen T.M. Lehre K.P. Danbolt N.C. Ottersen O.P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction.Glia. 2010; 58: 1094-1103Crossref PubMed Scopus (556) Google Scholar, 10Dienel G.A. Fueling and imaging brain activation.ASN Neuro. 2012; 4: 267-321Crossref Scopus (119) Google Scholar, 11Díaz-García C.M. Mongeon R. Lahmann C. Koveal D. Zucker H. Yellen G. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake.Cell Metab. 2017; 26: 361-374.e4Abstract Full Text Full Text PDF PubMed Scopus (229) Google Scholar, 12Dienel G.A. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.J. Neurosci. Res. 2017; 95: 2103-2125Crossref PubMed Scopus (99) Google Scholar]. Perivascular endfeet are the main site of glucose uptake by astrocytes [13Morgello S. Uson R.R. Schwartz E.J. Haber R.S. The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes.Glia. 1995; 14: 43-54Crossref PubMed Scopus (177) Google Scholar], but in human brain they may be several millimeters away from the perineuronal processes [14Oberheim N.A. Takano T. Han X. He W. Lin J.H. Wang F. Xu Q. Wyatt J.D. Pilcher W. Ojemann J.G. et al.Uniquely hominid features of adult human astrocytes.J. Neurosci. 2009; 29: 3276-3287Crossref PubMed Scopus (865) Google Scholar]. We show that cultured human fetal astrocytes express G6Pase-β, but not G6Pase-α. ER-targeted glucose sensors [15Fehr M. Takanaga H. Ehrhardt D.W. Frommer W.B. Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors.Mol. Cell. Biol. 2005; 25: 11102-11112Crossref PubMed Scopus (69) Google Scholar, 16Takanaga H. Frommer W.B. Facilitative plasma membrane transporters function during ER transit.FASEB J. 2010; 24: 2849-2858Crossref PubMed Scopus (52) Google Scholar] reveal that G6Pase-β allows the ER of human astrocytes to accumulate glucose by importing G6P from the cytosol. Glucose uptake by astrocytes, ATP production, and Ca2+ accumulation by the ER are attenuated after knockdown of G6Pase-β using lentivirus-delivered shRNA and substantially rescued by expression of G6Pase-α. We suggest that G6Pase-β activity allows effective uptake of glucose by astrocytes, and we speculate that it allows the ER to function as an intracellular “highway” delivering glucose from perivascular endfeet to the perisynaptic processes." @default.
- W2892076817 created "2018-09-27" @default.
- W2892076817 creator A5018035302 @default.
- W2892076817 creator A5040503192 @default.
- W2892076817 creator A5063194083 @default.
- W2892076817 date "2018-11-01" @default.
- W2892076817 modified "2023-09-30" @default.
- W2892076817 title "Effective Glucose Uptake by Human Astrocytes Requires Its Sequestration in the Endoplasmic Reticulum by Glucose-6-Phosphatase-β" @default.
- W2892076817 cites W1495018100 @default.
- W2892076817 cites W1561624774 @default.
- W2892076817 cites W176714696 @default.
- W2892076817 cites W1787952080 @default.
- W2892076817 cites W1899465268 @default.
- W2892076817 cites W1969540020 @default.
- W2892076817 cites W1971125401 @default.
- W2892076817 cites W1995225288 @default.
- W2892076817 cites W1996891480 @default.
- W2892076817 cites W2002271354 @default.
- W2892076817 cites W2002560241 @default.
- W2892076817 cites W2004008188 @default.
- W2892076817 cites W2009966509 @default.
- W2892076817 cites W2025876395 @default.
- W2892076817 cites W2039811582 @default.
- W2892076817 cites W2044149898 @default.
- W2892076817 cites W2045096723 @default.
- W2892076817 cites W2048080935 @default.
- W2892076817 cites W2072278357 @default.
- W2892076817 cites W2076515505 @default.
- W2892076817 cites W2089666692 @default.
- W2892076817 cites W2095087170 @default.
- W2892076817 cites W2108933333 @default.
- W2892076817 cites W2111866310 @default.
- W2892076817 cites W2119476349 @default.
- W2892076817 cites W2127497045 @default.
- W2892076817 cites W2136603487 @default.
- W2892076817 cites W2145055743 @default.
- W2892076817 cites W2146976930 @default.
- W2892076817 cites W2150192897 @default.
- W2892076817 cites W2155957566 @default.
- W2892076817 cites W2167279371 @default.
- W2892076817 cites W2168968107 @default.
- W2892076817 cites W2528211973 @default.
- W2892076817 cites W2584889633 @default.
- W2892076817 cites W2586989088 @default.
- W2892076817 cites W2597423760 @default.
- W2892076817 cites W2739924689 @default.
- W2892076817 cites W998680019 @default.
- W2892076817 doi "https://doi.org/10.1016/j.cub.2018.08.060" @default.
- W2892076817 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6224479" @default.
- W2892076817 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30415704" @default.
- W2892076817 hasPublicationYear "2018" @default.
- W2892076817 type Work @default.
- W2892076817 sameAs 2892076817 @default.
- W2892076817 citedByCount "23" @default.
- W2892076817 countsByYear W28920768172018 @default.
- W2892076817 countsByYear W28920768172019 @default.
- W2892076817 countsByYear W28920768172020 @default.
- W2892076817 countsByYear W28920768172021 @default.
- W2892076817 countsByYear W28920768172022 @default.
- W2892076817 countsByYear W28920768172023 @default.
- W2892076817 crossrefType "journal-article" @default.
- W2892076817 hasAuthorship W2892076817A5018035302 @default.
- W2892076817 hasAuthorship W2892076817A5040503192 @default.
- W2892076817 hasAuthorship W2892076817A5063194083 @default.
- W2892076817 hasBestOaLocation W28920768171 @default.
- W2892076817 hasConcept C104292427 @default.
- W2892076817 hasConcept C104317684 @default.
- W2892076817 hasConcept C119795356 @default.
- W2892076817 hasConcept C134018914 @default.
- W2892076817 hasConcept C153911025 @default.
- W2892076817 hasConcept C158617107 @default.
- W2892076817 hasConcept C161573976 @default.
- W2892076817 hasConcept C178666793 @default.
- W2892076817 hasConcept C181199279 @default.
- W2892076817 hasConcept C2777499176 @default.
- W2892076817 hasConcept C2779018223 @default.
- W2892076817 hasConcept C2779202576 @default.
- W2892076817 hasConcept C2779306644 @default.
- W2892076817 hasConcept C2779468605 @default.
- W2892076817 hasConcept C55493867 @default.
- W2892076817 hasConcept C86803240 @default.
- W2892076817 hasConcept C98539663 @default.
- W2892076817 hasConceptScore W2892076817C104292427 @default.
- W2892076817 hasConceptScore W2892076817C104317684 @default.
- W2892076817 hasConceptScore W2892076817C119795356 @default.
- W2892076817 hasConceptScore W2892076817C134018914 @default.
- W2892076817 hasConceptScore W2892076817C153911025 @default.
- W2892076817 hasConceptScore W2892076817C158617107 @default.
- W2892076817 hasConceptScore W2892076817C161573976 @default.
- W2892076817 hasConceptScore W2892076817C178666793 @default.
- W2892076817 hasConceptScore W2892076817C181199279 @default.
- W2892076817 hasConceptScore W2892076817C2777499176 @default.
- W2892076817 hasConceptScore W2892076817C2779018223 @default.
- W2892076817 hasConceptScore W2892076817C2779202576 @default.
- W2892076817 hasConceptScore W2892076817C2779306644 @default.
- W2892076817 hasConceptScore W2892076817C2779468605 @default.
- W2892076817 hasConceptScore W2892076817C55493867 @default.
- W2892076817 hasConceptScore W2892076817C86803240 @default.