Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892076951> ?p ?o ?g. }
- W2892076951 endingPage "250" @default.
- W2892076951 startingPage "209" @default.
- W2892076951 abstract "In previous work (Lee et al., 2016, 2017), Lee et al. introduced a new Smooth Particle Hydrodynamics (SPH) computational framework for large strain explicit solid dynamics with special emphasis on the treatment of near incompressibility. A first order system of hyperbolic equations was presented expressed in terms of the linear momentum and the minors of the deformation, namely the deformation gradient, its co-factor and its Jacobian. Taking advantage of this representation, the suppression of numerical deficiencies (e.g. spurious pressure, long term instability and/or consistency issues) was addressed through well-established stabilisation procedures. In Lee et al. (2016), the adaptation of the very efficient Jameson–Schmidt–Turkel algorithm was presented. Lee et al. (2017) introduced an adapted variationally consistent Streamline Upwind Petrov–Galerkin methodology. In this paper, we now introduce a third alternative stabilisation strategy, extremely competitive, and which does not require the selection of any user-defined artificial stabilisation parameter. Specifically, a characteristic-based Riemann solver in conjunction with a linear reconstruction procedure is used, with the aim to guarantee both consistency and conservation of the overall algorithm. We show that the proposed SPH formulation is very similar in nature to that of the upwind vertex centred Finite Volume Method presented in Aguirre et al. (2015). In order to extend the application range towards the incompressibility limit, an artificial compressibility algorithm is also developed. Finally, an extensive set of challenging numerical examples is analysed. The new SPH algorithm shows excellent behaviour in compressible, nearly incompressible and truly incompressible scenarios, yielding second order of convergence for velocities, deviatoric and volumetric components of the stress." @default.
- W2892076951 created "2018-09-27" @default.
- W2892076951 creator A5010862632 @default.
- W2892076951 creator A5028626068 @default.
- W2892076951 creator A5033668556 @default.
- W2892076951 creator A5046985434 @default.
- W2892076951 date "2019-02-01" @default.
- W2892076951 modified "2023-10-18" @default.
- W2892076951 title "A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm for large strain explicit solid dynamics" @default.
- W2892076951 cites W1019867296 @default.
- W2892076951 cites W1938543924 @default.
- W2892076951 cites W1967933514 @default.
- W2892076951 cites W1971358042 @default.
- W2892076951 cites W1982568754 @default.
- W2892076951 cites W1985820202 @default.
- W2892076951 cites W1991725548 @default.
- W2892076951 cites W2003919582 @default.
- W2892076951 cites W2007515850 @default.
- W2892076951 cites W2011043904 @default.
- W2892076951 cites W2011918778 @default.
- W2892076951 cites W2012828992 @default.
- W2892076951 cites W2022353814 @default.
- W2892076951 cites W2026480926 @default.
- W2892076951 cites W2026585040 @default.
- W2892076951 cites W2026856922 @default.
- W2892076951 cites W2027596044 @default.
- W2892076951 cites W2028736583 @default.
- W2892076951 cites W2029991301 @default.
- W2892076951 cites W2031753395 @default.
- W2892076951 cites W2032987212 @default.
- W2892076951 cites W2040246849 @default.
- W2892076951 cites W2046899724 @default.
- W2892076951 cites W2047505599 @default.
- W2892076951 cites W2054039753 @default.
- W2892076951 cites W2059036641 @default.
- W2892076951 cites W2068604923 @default.
- W2892076951 cites W2070733454 @default.
- W2892076951 cites W2070937158 @default.
- W2892076951 cites W2074134204 @default.
- W2892076951 cites W2074915630 @default.
- W2892076951 cites W2076077791 @default.
- W2892076951 cites W2077876476 @default.
- W2892076951 cites W2082056508 @default.
- W2892076951 cites W2083246525 @default.
- W2892076951 cites W2083548836 @default.
- W2892076951 cites W2084482671 @default.
- W2892076951 cites W2086542719 @default.
- W2892076951 cites W2088703872 @default.
- W2892076951 cites W2089290664 @default.
- W2892076951 cites W2093835648 @default.
- W2892076951 cites W2094762597 @default.
- W2892076951 cites W2113539312 @default.
- W2892076951 cites W2120820573 @default.
- W2892076951 cites W2141609324 @default.
- W2892076951 cites W2142345497 @default.
- W2892076951 cites W2145781189 @default.
- W2892076951 cites W2147546505 @default.
- W2892076951 cites W2156661592 @default.
- W2892076951 cites W2167082421 @default.
- W2892076951 cites W2210513266 @default.
- W2892076951 cites W2265706702 @default.
- W2892076951 cites W2344399874 @default.
- W2892076951 cites W2373659874 @default.
- W2892076951 cites W2500405709 @default.
- W2892076951 cites W2587411363 @default.
- W2892076951 cites W2810397991 @default.
- W2892076951 cites W3021622851 @default.
- W2892076951 cites W2132439236 @default.
- W2892076951 doi "https://doi.org/10.1016/j.cma.2018.09.033" @default.
- W2892076951 hasPublicationYear "2019" @default.
- W2892076951 type Work @default.
- W2892076951 sameAs 2892076951 @default.
- W2892076951 citedByCount "25" @default.
- W2892076951 countsByYear W28920769512019 @default.
- W2892076951 countsByYear W28920769512020 @default.
- W2892076951 countsByYear W28920769512021 @default.
- W2892076951 countsByYear W28920769512022 @default.
- W2892076951 countsByYear W28920769512023 @default.
- W2892076951 crossrefType "journal-article" @default.
- W2892076951 hasAuthorship W2892076951A5010862632 @default.
- W2892076951 hasAuthorship W2892076951A5028626068 @default.
- W2892076951 hasAuthorship W2892076951A5033668556 @default.
- W2892076951 hasAuthorship W2892076951A5046985434 @default.
- W2892076951 hasBestOaLocation W28920769512 @default.
- W2892076951 hasConcept C11413529 @default.
- W2892076951 hasConcept C120796332 @default.
- W2892076951 hasConcept C121332964 @default.
- W2892076951 hasConcept C122564879 @default.
- W2892076951 hasConcept C126255220 @default.
- W2892076951 hasConcept C134306372 @default.
- W2892076951 hasConcept C200331156 @default.
- W2892076951 hasConcept C2778770139 @default.
- W2892076951 hasConcept C28826006 @default.
- W2892076951 hasConcept C33923547 @default.
- W2892076951 hasConcept C38409319 @default.
- W2892076951 hasConcept C50478463 @default.
- W2892076951 hasConcept C57879066 @default.
- W2892076951 hasConcept C73000952 @default.