Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892080119> ?p ?o ?g. }
- W2892080119 endingPage "119" @default.
- W2892080119 startingPage "109" @default.
- W2892080119 abstract "Evaluate the quality of clinical order practice patterns machine-learned from clinician cohorts stratified by patient mortality outcomes. Inpatient electronic health records from 2010 to 2013 were extracted from a tertiary academic hospital. Clinicians (n = 1822) were stratified into low-mortality (21.8%, n = 397) and high-mortality (6.0%, n = 110) extremes using a two-sided P-value score quantifying deviation of observed vs. expected 30-day patient mortality rates. Three patient cohorts were assembled: patients seen by low-mortality clinicians, high-mortality clinicians, and an unfiltered crowd of all clinicians (n = 1046, 1046, and 5230 post-propensity score matching, respectively). Predicted order lists were automatically generated from recommender system algorithms trained on each patient cohort and evaluated against (i) real-world practice patterns reflected in patient cases with better-than-expected mortality outcomes and (ii) reference standards derived from clinical practice guidelines. Across six common admission diagnoses, order lists learned from the crowd demonstrated the greatest alignment with guideline references (AUROC range = 0.86–0.91), performing on par or better than those learned from low-mortality clinicians (0.79–0.84, P < 10−5) or manually-authored hospital order sets (0.65–0.77, P < 10−3). The same trend was observed in evaluating model predictions against better-than-expected patient cases, with the crowd model (AUROC mean = 0.91) outperforming the low-mortality model (0.87, P < 10−16) and order set benchmarks (0.78, P < 10−35). Whether machine-learning models are trained on all clinicians or a subset of experts illustrates a bias-variance tradeoff in data usage. Defining robust metrics to assess quality based on internal (e.g. practice patterns from better-than-expected patient cases) or external reference standards (e.g. clinical practice guidelines) is critical to assess decision support content. Learning relevant decision support content from all clinicians is as, if not more, robust than learning from a select subgroup of clinicians favored by patient outcomes." @default.
- W2892080119 created "2018-09-27" @default.
- W2892080119 creator A5036017692 @default.
- W2892080119 creator A5038535069 @default.
- W2892080119 creator A5041175834 @default.
- W2892080119 creator A5041210651 @default.
- W2892080119 creator A5044159389 @default.
- W2892080119 creator A5046725885 @default.
- W2892080119 creator A5054425285 @default.
- W2892080119 creator A5061093158 @default.
- W2892080119 date "2018-10-01" @default.
- W2892080119 modified "2023-10-14" @default.
- W2892080119 title "An evaluation of clinical order patterns machine-learned from clinician cohorts stratified by patient mortality outcomes" @default.
- W2892080119 cites W121472071 @default.
- W2892080119 cites W1428777146 @default.
- W2892080119 cites W1905183890 @default.
- W2892080119 cites W1966670930 @default.
- W2892080119 cites W1979052027 @default.
- W2892080119 cites W1985235335 @default.
- W2892080119 cites W1999471281 @default.
- W2892080119 cites W2004122607 @default.
- W2892080119 cites W2006183964 @default.
- W2892080119 cites W2016213571 @default.
- W2892080119 cites W2017442852 @default.
- W2892080119 cites W2019716755 @default.
- W2892080119 cites W202007523 @default.
- W2892080119 cites W2040880477 @default.
- W2892080119 cites W2043387284 @default.
- W2892080119 cites W2056102627 @default.
- W2892080119 cites W2056678806 @default.
- W2892080119 cites W2061326496 @default.
- W2892080119 cites W2063207091 @default.
- W2892080119 cites W2070533721 @default.
- W2892080119 cites W2071637551 @default.
- W2892080119 cites W2077033046 @default.
- W2892080119 cites W2083062358 @default.
- W2892080119 cites W2087212215 @default.
- W2892080119 cites W2097855313 @default.
- W2892080119 cites W2098742610 @default.
- W2892080119 cites W2100661105 @default.
- W2892080119 cites W2110694016 @default.
- W2892080119 cites W2111635289 @default.
- W2892080119 cites W2114831632 @default.
- W2892080119 cites W2115441252 @default.
- W2892080119 cites W2119340816 @default.
- W2892080119 cites W2128349740 @default.
- W2892080119 cites W2133979383 @default.
- W2892080119 cites W2145794711 @default.
- W2892080119 cites W2151471729 @default.
- W2892080119 cites W2159094788 @default.
- W2892080119 cites W2160752419 @default.
- W2892080119 cites W2164777277 @default.
- W2892080119 cites W2170912464 @default.
- W2892080119 cites W2269485835 @default.
- W2892080119 cites W2283450481 @default.
- W2892080119 cites W2320242166 @default.
- W2892080119 cites W2399962925 @default.
- W2892080119 cites W2405146964 @default.
- W2892080119 cites W2521579474 @default.
- W2892080119 cites W2595962374 @default.
- W2892080119 cites W259909490 @default.
- W2892080119 cites W2615770132 @default.
- W2892080119 cites W2777842403 @default.
- W2892080119 cites W2799677333 @default.
- W2892080119 cites W2892080119 @default.
- W2892080119 cites W291506396 @default.
- W2892080119 cites W2980814362 @default.
- W2892080119 cites W3004732066 @default.
- W2892080119 cites W4211082352 @default.
- W2892080119 cites W4233651127 @default.
- W2892080119 cites W4247943214 @default.
- W2892080119 cites W4293242440 @default.
- W2892080119 cites W43410386 @default.
- W2892080119 cites W76937477 @default.
- W2892080119 doi "https://doi.org/10.1016/j.jbi.2018.09.005" @default.
- W2892080119 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6250126" @default.
- W2892080119 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30195660" @default.
- W2892080119 hasPublicationYear "2018" @default.
- W2892080119 type Work @default.
- W2892080119 sameAs 2892080119 @default.
- W2892080119 citedByCount "17" @default.
- W2892080119 countsByYear W28920801192018 @default.
- W2892080119 countsByYear W28920801192019 @default.
- W2892080119 countsByYear W28920801192020 @default.
- W2892080119 countsByYear W28920801192021 @default.
- W2892080119 countsByYear W28920801192022 @default.
- W2892080119 countsByYear W28920801192023 @default.
- W2892080119 crossrefType "journal-article" @default.
- W2892080119 hasAuthorship W2892080119A5036017692 @default.
- W2892080119 hasAuthorship W2892080119A5038535069 @default.
- W2892080119 hasAuthorship W2892080119A5041175834 @default.
- W2892080119 hasAuthorship W2892080119A5041210651 @default.
- W2892080119 hasAuthorship W2892080119A5044159389 @default.
- W2892080119 hasAuthorship W2892080119A5046725885 @default.
- W2892080119 hasAuthorship W2892080119A5054425285 @default.
- W2892080119 hasAuthorship W2892080119A5061093158 @default.
- W2892080119 hasBestOaLocation W28920801191 @default.
- W2892080119 hasConcept C119857082 @default.