Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892086650> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2892086650 abstract "Normalization techniques play an important role in supporting efficient and often more effective training of deep neural networks. While conventional methods explicitly normalize the activations, we suggest to add a loss term instead. This new loss term encourages the variance of the activations to be stable and not vary from one random mini-batch to the next. As we prove, this encourages the activations to be distributed around a few distinct modes. We also show that if the inputs are from a mixture of two Gaussians, the new loss would either join the two together, or separate between them optimally in the LDA sense, depending on the prior probabilities. Finally, we are able to link the new regularization term to the batchnorm method, which provides it with a regularization perspective. Our experiments demonstrate an improvement in accuracy over the batchnorm technique for both CNNs and fully connected networks." @default.
- W2892086650 created "2018-09-27" @default.
- W2892086650 creator A5049929304 @default.
- W2892086650 creator A5078102229 @default.
- W2892086650 date "2018-11-21" @default.
- W2892086650 modified "2023-10-01" @default.
- W2892086650 title "Regularizing by the Variance of the Activations' Sample-Variances" @default.
- W2892086650 cites W2127230474 @default.
- W2892086650 cites W2135046866 @default.
- W2892086650 cites W2176412452 @default.
- W2892086650 cites W2194775991 @default.
- W2892086650 cites W2284050935 @default.
- W2892086650 cites W2319920447 @default.
- W2892086650 cites W2432004435 @default.
- W2892086650 cites W2502312327 @default.
- W2892086650 cites W2513419314 @default.
- W2892086650 cites W2519430864 @default.
- W2892086650 cites W2546302380 @default.
- W2892086650 cites W2616957565 @default.
- W2892086650 cites W2624413595 @default.
- W2892086650 cites W2741485222 @default.
- W2892086650 cites W2766447205 @default.
- W2892086650 cites W2949117887 @default.
- W2892086650 cites W2951004968 @default.
- W2892086650 cites W2951696358 @default.
- W2892086650 cites W2952020226 @default.
- W2892086650 hasPublicationYear "2018" @default.
- W2892086650 type Work @default.
- W2892086650 sameAs 2892086650 @default.
- W2892086650 citedByCount "6" @default.
- W2892086650 countsByYear W28920866502019 @default.
- W2892086650 countsByYear W28920866502020 @default.
- W2892086650 countsByYear W28920866502021 @default.
- W2892086650 crossrefType "posted-content" @default.
- W2892086650 hasAuthorship W2892086650A5049929304 @default.
- W2892086650 hasAuthorship W2892086650A5078102229 @default.
- W2892086650 hasConcept C11413529 @default.
- W2892086650 hasConcept C119857082 @default.
- W2892086650 hasConcept C121332964 @default.
- W2892086650 hasConcept C121955636 @default.
- W2892086650 hasConcept C12713177 @default.
- W2892086650 hasConcept C136886441 @default.
- W2892086650 hasConcept C144024400 @default.
- W2892086650 hasConcept C144133560 @default.
- W2892086650 hasConcept C153180895 @default.
- W2892086650 hasConcept C154945302 @default.
- W2892086650 hasConcept C19165224 @default.
- W2892086650 hasConcept C196083921 @default.
- W2892086650 hasConcept C2776135515 @default.
- W2892086650 hasConcept C2984842247 @default.
- W2892086650 hasConcept C41008148 @default.
- W2892086650 hasConcept C50644808 @default.
- W2892086650 hasConcept C61797465 @default.
- W2892086650 hasConcept C62520636 @default.
- W2892086650 hasConceptScore W2892086650C11413529 @default.
- W2892086650 hasConceptScore W2892086650C119857082 @default.
- W2892086650 hasConceptScore W2892086650C121332964 @default.
- W2892086650 hasConceptScore W2892086650C121955636 @default.
- W2892086650 hasConceptScore W2892086650C12713177 @default.
- W2892086650 hasConceptScore W2892086650C136886441 @default.
- W2892086650 hasConceptScore W2892086650C144024400 @default.
- W2892086650 hasConceptScore W2892086650C144133560 @default.
- W2892086650 hasConceptScore W2892086650C153180895 @default.
- W2892086650 hasConceptScore W2892086650C154945302 @default.
- W2892086650 hasConceptScore W2892086650C19165224 @default.
- W2892086650 hasConceptScore W2892086650C196083921 @default.
- W2892086650 hasConceptScore W2892086650C2776135515 @default.
- W2892086650 hasConceptScore W2892086650C2984842247 @default.
- W2892086650 hasConceptScore W2892086650C41008148 @default.
- W2892086650 hasConceptScore W2892086650C50644808 @default.
- W2892086650 hasConceptScore W2892086650C61797465 @default.
- W2892086650 hasConceptScore W2892086650C62520636 @default.
- W2892086650 hasLocation W28920866501 @default.
- W2892086650 hasOpenAccess W2892086650 @default.
- W2892086650 hasPrimaryLocation W28920866501 @default.
- W2892086650 hasRelatedWork W1548974228 @default.
- W2892086650 hasRelatedWork W1956343362 @default.
- W2892086650 hasRelatedWork W2166721725 @default.
- W2892086650 hasRelatedWork W2220622620 @default.
- W2892086650 hasRelatedWork W2604237878 @default.
- W2892086650 hasRelatedWork W2604700561 @default.
- W2892086650 hasRelatedWork W2752514874 @default.
- W2892086650 hasRelatedWork W2787178869 @default.
- W2892086650 hasRelatedWork W2902200315 @default.
- W2892086650 hasRelatedWork W2913881544 @default.
- W2892086650 hasRelatedWork W2945557596 @default.
- W2892086650 hasRelatedWork W2949277570 @default.
- W2892086650 hasRelatedWork W2949794196 @default.
- W2892086650 hasRelatedWork W2952513660 @default.
- W2892086650 hasRelatedWork W2962755790 @default.
- W2892086650 hasRelatedWork W2982091694 @default.
- W2892086650 hasRelatedWork W3037514364 @default.
- W2892086650 hasRelatedWork W3095592098 @default.
- W2892086650 hasRelatedWork W3163158867 @default.
- W2892086650 hasRelatedWork W3170718858 @default.
- W2892086650 isParatext "false" @default.
- W2892086650 isRetracted "false" @default.
- W2892086650 magId "2892086650" @default.
- W2892086650 workType "article" @default.