Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892088821> ?p ?o ?g. }
- W2892088821 abstract "The precise prediction of windspeed is essential in order to improve and optimize wind power prediction. However, due to the sporadic and inherent complexity of weather parameters, the prediction of windspeed data using different patterns is difficult. Machine learning (ML) is a powerful tool to deal with uncertainty and has been widely discussed and applied in renewable energy forecasting. In this chapter, the authors present and compare an artificial neural network (ANN) and genetic programming (GP) model as a tool to predict windspeed of 15 locations in Queensland, Australia. After performing feature selection using neighborhood component analysis (NCA) from 11 different metrological parameters, seven of the most important predictor variables were chosen for 85 Queensland locations, 60 of which were used for training the model, 10 locations for model validation, and 15 locations for the model testing. For all 15 target sites, the testing performance of ANN was significantly superior to the GP model." @default.
- W2892088821 created "2018-09-27" @default.
- W2892088821 creator A5008724716 @default.
- W2892088821 creator A5037420527 @default.
- W2892088821 creator A5049303725 @default.
- W2892088821 creator A5075682713 @default.
- W2892088821 date "2018-01-01" @default.
- W2892088821 modified "2023-09-28" @default.
- W2892088821 title "Optimization of Windspeed Prediction Using an Artificial Neural Network Compared With a Genetic Programming Model" @default.
- W2892088821 cites W1588337522 @default.
- W2892088821 cites W1964868025 @default.
- W2892088821 cites W1964886660 @default.
- W2892088821 cites W1969898023 @default.
- W2892088821 cites W1978587203 @default.
- W2892088821 cites W1984703120 @default.
- W2892088821 cites W1989120577 @default.
- W2892088821 cites W1990729297 @default.
- W2892088821 cites W2004870097 @default.
- W2892088821 cites W2009812227 @default.
- W2892088821 cites W2010069861 @default.
- W2892088821 cites W2011893501 @default.
- W2892088821 cites W2012231377 @default.
- W2892088821 cites W2017480715 @default.
- W2892088821 cites W2019901473 @default.
- W2892088821 cites W2037460094 @default.
- W2892088821 cites W2039240409 @default.
- W2892088821 cites W2044827781 @default.
- W2892088821 cites W2046580214 @default.
- W2892088821 cites W2050038283 @default.
- W2892088821 cites W2051416171 @default.
- W2892088821 cites W2051812123 @default.
- W2892088821 cites W2053557742 @default.
- W2892088821 cites W2058998445 @default.
- W2892088821 cites W2059349490 @default.
- W2892088821 cites W2062174566 @default.
- W2892088821 cites W2065902166 @default.
- W2892088821 cites W2075604548 @default.
- W2892088821 cites W2078667481 @default.
- W2892088821 cites W2088911425 @default.
- W2892088821 cites W2089487480 @default.
- W2892088821 cites W2102031662 @default.
- W2892088821 cites W2106328797 @default.
- W2892088821 cites W2107824224 @default.
- W2892088821 cites W2111395484 @default.
- W2892088821 cites W2121745948 @default.
- W2892088821 cites W2154427588 @default.
- W2892088821 cites W2168087114 @default.
- W2892088821 cites W2177886898 @default.
- W2892088821 cites W2195671126 @default.
- W2892088821 cites W2244268134 @default.
- W2892088821 cites W2247792348 @default.
- W2892088821 cites W2283737367 @default.
- W2892088821 cites W2295192908 @default.
- W2892088821 cites W2326951751 @default.
- W2892088821 cites W2543960250 @default.
- W2892088821 cites W2561807722 @default.
- W2892088821 cites W2581811121 @default.
- W2892088821 cites W2587088850 @default.
- W2892088821 cites W2587347436 @default.
- W2892088821 cites W2588669757 @default.
- W2892088821 cites W290561687 @default.
- W2892088821 cites W3018770027 @default.
- W2892088821 doi "https://doi.org/10.4018/978-1-5225-4766-2.ch015" @default.
- W2892088821 hasPublicationYear "2018" @default.
- W2892088821 type Work @default.
- W2892088821 sameAs 2892088821 @default.
- W2892088821 citedByCount "1" @default.
- W2892088821 countsByYear W28920888212019 @default.
- W2892088821 crossrefType "book-chapter" @default.
- W2892088821 hasAuthorship W2892088821A5008724716 @default.
- W2892088821 hasAuthorship W2892088821A5037420527 @default.
- W2892088821 hasAuthorship W2892088821A5049303725 @default.
- W2892088821 hasAuthorship W2892088821A5075682713 @default.
- W2892088821 hasBestOaLocation W28920888212 @default.
- W2892088821 hasConcept C110332635 @default.
- W2892088821 hasConcept C119599485 @default.
- W2892088821 hasConcept C119857082 @default.
- W2892088821 hasConcept C127413603 @default.
- W2892088821 hasConcept C148483581 @default.
- W2892088821 hasConcept C153294291 @default.
- W2892088821 hasConcept C154945302 @default.
- W2892088821 hasConcept C161067210 @default.
- W2892088821 hasConcept C188573790 @default.
- W2892088821 hasConcept C205649164 @default.
- W2892088821 hasConcept C41008148 @default.
- W2892088821 hasConcept C45804977 @default.
- W2892088821 hasConcept C50644808 @default.
- W2892088821 hasConcept C78600449 @default.
- W2892088821 hasConcept C8880873 @default.
- W2892088821 hasConceptScore W2892088821C110332635 @default.
- W2892088821 hasConceptScore W2892088821C119599485 @default.
- W2892088821 hasConceptScore W2892088821C119857082 @default.
- W2892088821 hasConceptScore W2892088821C127413603 @default.
- W2892088821 hasConceptScore W2892088821C148483581 @default.
- W2892088821 hasConceptScore W2892088821C153294291 @default.
- W2892088821 hasConceptScore W2892088821C154945302 @default.
- W2892088821 hasConceptScore W2892088821C161067210 @default.
- W2892088821 hasConceptScore W2892088821C188573790 @default.
- W2892088821 hasConceptScore W2892088821C205649164 @default.
- W2892088821 hasConceptScore W2892088821C41008148 @default.