Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892090722> ?p ?o ?g. }
- W2892090722 endingPage "54085" @default.
- W2892090722 startingPage "54075" @default.
- W2892090722 abstract "Domestic violence (DV) is a cause of concern due to the threat it poses toward public health and human rights. There is a need for quick identification of the victims of this condition so that DV crisis service (DVCS) can offer necessary support in a timely manner. The availability of social media has allowed DV victims to share their stories and receive support from the community, which opens an opportunity for DVCS to actively approach and support DV victims. However, it is time consuming and inefficient to manually browse through a massive number of available posts. This paper adopts deep learning as an approach for automatic identification of DV victims in critical need. Empirical evidence on a ground truth data set has achieved an accuracy of up to 94%, which outperforms traditional machine-learning techniques. The analysis of informative features helps to identify important words which might indicate critical posts in the classification process. The experimental results are helpful to researchers and practitioners in developing techniques for identifying and supporting DV victims." @default.
- W2892090722 created "2018-09-27" @default.
- W2892090722 creator A5024640615 @default.
- W2892090722 creator A5027376496 @default.
- W2892090722 creator A5053982478 @default.
- W2892090722 creator A5076869167 @default.
- W2892090722 date "2018-01-01" @default.
- W2892090722 modified "2023-10-16" @default.
- W2892090722 title "Domestic Violence Crisis Identification From Facebook Posts Based on Deep Learning" @default.
- W2892090722 cites W1832693441 @default.
- W2892090722 cites W1978394996 @default.
- W2892090722 cites W1981048805 @default.
- W2892090722 cites W2005708641 @default.
- W2892090722 cites W2013914158 @default.
- W2892090722 cites W2015651013 @default.
- W2892090722 cites W2017054626 @default.
- W2892090722 cites W2019759670 @default.
- W2892090722 cites W2049606256 @default.
- W2892090722 cites W2056986706 @default.
- W2892090722 cites W2068695001 @default.
- W2892090722 cites W2070759049 @default.
- W2892090722 cites W2092393418 @default.
- W2892090722 cites W2120615054 @default.
- W2892090722 cites W2131100936 @default.
- W2892090722 cites W2143430537 @default.
- W2892090722 cites W2153402524 @default.
- W2892090722 cites W2156413587 @default.
- W2892090722 cites W2160685721 @default.
- W2892090722 cites W2165612380 @default.
- W2892090722 cites W2210969396 @default.
- W2892090722 cites W2250539671 @default.
- W2892090722 cites W2250734828 @default.
- W2892090722 cites W2293132484 @default.
- W2892090722 cites W2340339255 @default.
- W2892090722 cites W2414393820 @default.
- W2892090722 cites W2500334081 @default.
- W2892090722 cites W2740382415 @default.
- W2892090722 cites W2741065173 @default.
- W2892090722 cites W2767665719 @default.
- W2892090722 cites W2784168210 @default.
- W2892090722 cites W2798523175 @default.
- W2892090722 cites W2919115771 @default.
- W2892090722 cites W2962707464 @default.
- W2892090722 cites W2964199361 @default.
- W2892090722 cites W3103061166 @default.
- W2892090722 cites W4205184193 @default.
- W2892090722 cites W4294214983 @default.
- W2892090722 doi "https://doi.org/10.1109/access.2018.2871446" @default.
- W2892090722 hasPublicationYear "2018" @default.
- W2892090722 type Work @default.
- W2892090722 sameAs 2892090722 @default.
- W2892090722 citedByCount "40" @default.
- W2892090722 countsByYear W28920907222019 @default.
- W2892090722 countsByYear W28920907222020 @default.
- W2892090722 countsByYear W28920907222021 @default.
- W2892090722 countsByYear W28920907222022 @default.
- W2892090722 countsByYear W28920907222023 @default.
- W2892090722 crossrefType "journal-article" @default.
- W2892090722 hasAuthorship W2892090722A5024640615 @default.
- W2892090722 hasAuthorship W2892090722A5027376496 @default.
- W2892090722 hasAuthorship W2892090722A5053982478 @default.
- W2892090722 hasAuthorship W2892090722A5076869167 @default.
- W2892090722 hasBestOaLocation W28920907221 @default.
- W2892090722 hasConcept C108827166 @default.
- W2892090722 hasConcept C111472728 @default.
- W2892090722 hasConcept C111919701 @default.
- W2892090722 hasConcept C116834253 @default.
- W2892090722 hasConcept C119857082 @default.
- W2892090722 hasConcept C120936955 @default.
- W2892090722 hasConcept C136764020 @default.
- W2892090722 hasConcept C138885662 @default.
- W2892090722 hasConcept C144133560 @default.
- W2892090722 hasConcept C154945302 @default.
- W2892090722 hasConcept C162853370 @default.
- W2892090722 hasConcept C177264268 @default.
- W2892090722 hasConcept C199360897 @default.
- W2892090722 hasConcept C2522767166 @default.
- W2892090722 hasConcept C2780378061 @default.
- W2892090722 hasConcept C3017944768 @default.
- W2892090722 hasConcept C38652104 @default.
- W2892090722 hasConcept C41008148 @default.
- W2892090722 hasConcept C518677369 @default.
- W2892090722 hasConcept C526869908 @default.
- W2892090722 hasConcept C542059537 @default.
- W2892090722 hasConcept C545542383 @default.
- W2892090722 hasConcept C59822182 @default.
- W2892090722 hasConcept C71924100 @default.
- W2892090722 hasConcept C86803240 @default.
- W2892090722 hasConcept C98045186 @default.
- W2892090722 hasConceptScore W2892090722C108827166 @default.
- W2892090722 hasConceptScore W2892090722C111472728 @default.
- W2892090722 hasConceptScore W2892090722C111919701 @default.
- W2892090722 hasConceptScore W2892090722C116834253 @default.
- W2892090722 hasConceptScore W2892090722C119857082 @default.
- W2892090722 hasConceptScore W2892090722C120936955 @default.
- W2892090722 hasConceptScore W2892090722C136764020 @default.
- W2892090722 hasConceptScore W2892090722C138885662 @default.
- W2892090722 hasConceptScore W2892090722C144133560 @default.