Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892093300> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2892093300 abstract "In carbon capture and sequestration, building an effective monitoring method is a crucial step to detect and respond to CO2 leakage. CO2 leakage detection methods rely on geophysical observations and monitoring sensor network. However, traditional methods usually require physical models to be interpreted by experts, and the accuracy of these methods will be restricted by different application conditions. In this paper, we develop a novel data-driven detection method based on densely connected convolutional networks. Our detection method learns a mapping relation between seismic data and the CO2 leakage mass. To account for the spatial and temporal characteristics of seismic data, we design a novel network architecture by combining 1-D and 2-D convolutional neural networks together. To overcome the expensive computational cost, we further apply a densely-connecting policy to our network architecture to reduce the network parameters. We employ our detection method to synthetic seismic datasets using Kimberlina model. The numerical results show that our leakage detection method accurately detects the leakage mass. Therefore, our novel CO2 leakage detection method has great potential for monitoring CO2 storage." @default.
- W2892093300 created "2018-09-27" @default.
- W2892093300 creator A5001857687 @default.
- W2892093300 creator A5024861962 @default.
- W2892093300 creator A5025218521 @default.
- W2892093300 creator A5052676856 @default.
- W2892093300 creator A5080330902 @default.
- W2892093300 creator A5084040355 @default.
- W2892093300 date "2018-10-13" @default.
- W2892093300 modified "2023-10-18" @default.
- W2892093300 title "Spatial-Temporal Densely Connected Convolutional Networks: An Application to CO2 Leakage Detection" @default.
- W2892093300 cites W1995562189 @default.
- W2892093300 cites W2000229605 @default.
- W2892093300 cites W2072807258 @default.
- W2892093300 cites W2194775991 @default.
- W2892093300 cites W2274287116 @default.
- W2892093300 cites W2313771942 @default.
- W2892093300 cites W2963446712 @default.
- W2892093300 doi "https://doi.org/10.48550/arxiv.1810.05932" @default.
- W2892093300 hasPublicationYear "2018" @default.
- W2892093300 type Work @default.
- W2892093300 sameAs 2892093300 @default.
- W2892093300 citedByCount "0" @default.
- W2892093300 crossrefType "posted-content" @default.
- W2892093300 hasAuthorship W2892093300A5001857687 @default.
- W2892093300 hasAuthorship W2892093300A5024861962 @default.
- W2892093300 hasAuthorship W2892093300A5025218521 @default.
- W2892093300 hasAuthorship W2892093300A5052676856 @default.
- W2892093300 hasAuthorship W2892093300A5080330902 @default.
- W2892093300 hasAuthorship W2892093300A5084040355 @default.
- W2892093300 hasBestOaLocation W28920933001 @default.
- W2892093300 hasConcept C124101348 @default.
- W2892093300 hasConcept C139719470 @default.
- W2892093300 hasConcept C153180895 @default.
- W2892093300 hasConcept C154945302 @default.
- W2892093300 hasConcept C162324750 @default.
- W2892093300 hasConcept C2777042071 @default.
- W2892093300 hasConcept C41008148 @default.
- W2892093300 hasConcept C79403827 @default.
- W2892093300 hasConcept C81363708 @default.
- W2892093300 hasConceptScore W2892093300C124101348 @default.
- W2892093300 hasConceptScore W2892093300C139719470 @default.
- W2892093300 hasConceptScore W2892093300C153180895 @default.
- W2892093300 hasConceptScore W2892093300C154945302 @default.
- W2892093300 hasConceptScore W2892093300C162324750 @default.
- W2892093300 hasConceptScore W2892093300C2777042071 @default.
- W2892093300 hasConceptScore W2892093300C41008148 @default.
- W2892093300 hasConceptScore W2892093300C79403827 @default.
- W2892093300 hasConceptScore W2892093300C81363708 @default.
- W2892093300 hasLocation W28920933001 @default.
- W2892093300 hasLocation W28920933002 @default.
- W2892093300 hasOpenAccess W2892093300 @default.
- W2892093300 hasPrimaryLocation W28920933001 @default.
- W2892093300 hasRelatedWork W2175746458 @default.
- W2892093300 hasRelatedWork W2732542196 @default.
- W2892093300 hasRelatedWork W2738221750 @default.
- W2892093300 hasRelatedWork W2760085659 @default.
- W2892093300 hasRelatedWork W2767651786 @default.
- W2892093300 hasRelatedWork W2883200793 @default.
- W2892093300 hasRelatedWork W2912288872 @default.
- W2892093300 hasRelatedWork W2940661641 @default.
- W2892093300 hasRelatedWork W3012978760 @default.
- W2892093300 hasRelatedWork W3093612317 @default.
- W2892093300 isParatext "false" @default.
- W2892093300 isRetracted "false" @default.
- W2892093300 magId "2892093300" @default.
- W2892093300 workType "article" @default.