Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892095902> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2892095902 abstract "In order to provide personalized recommendations, collaborative filtering algorithms take into account several kinds of feedback from the user. A common kind of feedback, which was largely neglected by the Academic community until recently, is textual reviews that are written by the users. Reviews may reveal a great deal about both the users and the items, and indeed in recent years, several algorithms that make use of textual reviews were proposed. However, it is not entirely clear how this signal should be combined with traditional methods that address other kinds of feedback (such as an explicit numeric rating). In this paper, we introduce a novel algorithm, named Collaborative Filtering using Compatibility Vectors (CFCV), which builds upon recent advances in natural language understanding, and uses a neural network in order to provide a meaningful representation of the reviews. This allows to enhance collaborative filtering (particularly, factor methods ) with this new kind of information, in a way that is both natural and effective. We validate our algorithm by conducting experiments on several benchmark datasets, showing that it outperforms the existing methods. Moreover, underlying our solution there is a general architecture that may be further explored." @default.
- W2892095902 created "2018-09-27" @default.
- W2892095902 creator A5013414088 @default.
- W2892095902 creator A5026428283 @default.
- W2892095902 creator A5082408006 @default.
- W2892095902 creator A5091906883 @default.
- W2892095902 date "2018-09-10" @default.
- W2892095902 modified "2023-09-26" @default.
- W2892095902 title "A Word is Worth a Thousand Ratings" @default.
- W2892095902 cites W1971675255 @default.
- W2892095902 cites W1978271507 @default.
- W2892095902 cites W1991418309 @default.
- W2892095902 cites W1994156358 @default.
- W2892095902 cites W1994389483 @default.
- W2892095902 cites W2001259128 @default.
- W2892095902 cites W2028988057 @default.
- W2892095902 cites W2037351199 @default.
- W2892095902 cites W2050096199 @default.
- W2892095902 cites W2053473945 @default.
- W2892095902 cites W2054141820 @default.
- W2892095902 cites W2057763140 @default.
- W2892095902 cites W2061873838 @default.
- W2892095902 cites W2099866409 @default.
- W2892095902 cites W2101409192 @default.
- W2892095902 cites W2135790056 @default.
- W2892095902 cites W2142972908 @default.
- W2892095902 cites W2152184085 @default.
- W2892095902 cites W2157881433 @default.
- W2892095902 cites W2158515176 @default.
- W2892095902 cites W2160409620 @default.
- W2892095902 cites W2166956738 @default.
- W2892095902 cites W2295739661 @default.
- W2892095902 cites W2337403844 @default.
- W2892095902 cites W2441496199 @default.
- W2892095902 cites W2481439837 @default.
- W2892095902 cites W2575006718 @default.
- W2892095902 cites W2582154088 @default.
- W2892095902 cites W2606749808 @default.
- W2892095902 cites W2742657630 @default.
- W2892095902 cites W3102701984 @default.
- W2892095902 cites W4205184193 @default.
- W2892095902 cites W4239943352 @default.
- W2892095902 cites W4249267926 @default.
- W2892095902 doi "https://doi.org/10.1145/3234944.3234953" @default.
- W2892095902 hasPublicationYear "2018" @default.
- W2892095902 type Work @default.
- W2892095902 sameAs 2892095902 @default.
- W2892095902 citedByCount "3" @default.
- W2892095902 countsByYear W28920959022019 @default.
- W2892095902 countsByYear W28920959022021 @default.
- W2892095902 crossrefType "proceedings-article" @default.
- W2892095902 hasAuthorship W2892095902A5013414088 @default.
- W2892095902 hasAuthorship W2892095902A5026428283 @default.
- W2892095902 hasAuthorship W2892095902A5082408006 @default.
- W2892095902 hasAuthorship W2892095902A5091906883 @default.
- W2892095902 hasConcept C138885662 @default.
- W2892095902 hasConcept C204321447 @default.
- W2892095902 hasConcept C28490314 @default.
- W2892095902 hasConcept C41008148 @default.
- W2892095902 hasConcept C41895202 @default.
- W2892095902 hasConcept C90805587 @default.
- W2892095902 hasConceptScore W2892095902C138885662 @default.
- W2892095902 hasConceptScore W2892095902C204321447 @default.
- W2892095902 hasConceptScore W2892095902C28490314 @default.
- W2892095902 hasConceptScore W2892095902C41008148 @default.
- W2892095902 hasConceptScore W2892095902C41895202 @default.
- W2892095902 hasConceptScore W2892095902C90805587 @default.
- W2892095902 hasLocation W28920959021 @default.
- W2892095902 hasOpenAccess W2892095902 @default.
- W2892095902 hasPrimaryLocation W28920959021 @default.
- W2892095902 hasRelatedWork W1508636238 @default.
- W2892095902 hasRelatedWork W1552159754 @default.
- W2892095902 hasRelatedWork W2148757832 @default.
- W2892095902 hasRelatedWork W2360025963 @default.
- W2892095902 hasRelatedWork W2360785147 @default.
- W2892095902 hasRelatedWork W2368651715 @default.
- W2892095902 hasRelatedWork W2370299677 @default.
- W2892095902 hasRelatedWork W2611614995 @default.
- W2892095902 hasRelatedWork W2789919619 @default.
- W2892095902 hasRelatedWork W3107474891 @default.
- W2892095902 isParatext "false" @default.
- W2892095902 isRetracted "false" @default.
- W2892095902 magId "2892095902" @default.
- W2892095902 workType "article" @default.