Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892103920> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2892103920 endingPage "46" @default.
- W2892103920 startingPage "40" @default.
- W2892103920 abstract "Risk prediction model estimates event occurrence based on related data. Conventional statistical metrics that utilized primary data generates simple descriptive analysis that often provide insufficient knowledge for decision making. In contrast, data mining techniques that have the capability to find hidden pattern from the secondary data in large databases and create prediction for de- sired output has become a popular approach to develop any risk prediction model. In healthcare particularly, data mining techniques can be applied in disease risk prediction model to provide reliable prediction on the possibility of acquiring the disease based on individual’s clinical and non-clinical data. Due to the increased use of data mining in healthcare, this study aims at identifying the data mining techniques and algorithms that are commonly implemented in studies related to various disease risk prediction model as well as finding the accuracy of the algorithms. The accuracy evaluation consists of various method, but this paper is focusing on overall accuracy which is measured by the total number of correctly predicted output over the total number of prediction. A systematic literature review approach that search across five databases found 170 articles, of which 7 articles were selected in the final process. This review found that most prediction model used classification technique, with a focus on decision tree, neural network, support vector machines, and Naïve Bayes algorithms where heart-related disease is commonly studied. Further research can apply similar algorithms to develop risk prediction model for other types of diseases, such as infectious disease prediction." @default.
- W2892103920 created "2018-09-27" @default.
- W2892103920 creator A5025293830 @default.
- W2892103920 creator A5026248619 @default.
- W2892103920 creator A5088346696 @default.
- W2892103920 date "2018-09-09" @default.
- W2892103920 modified "2023-09-24" @default.
- W2892103920 title "Data Mining Techniques for Disease Risk Prediction Model: A Systematic Literature Review" @default.
- W2892103920 cites W1171616665 @default.
- W2892103920 cites W2046494118 @default.
- W2892103920 cites W2097686533 @default.
- W2892103920 cites W2106728628 @default.
- W2892103920 cites W2164325784 @default.
- W2892103920 cites W2318663896 @default.
- W2892103920 cites W2578312701 @default.
- W2892103920 cites W2602906219 @default.
- W2892103920 cites W2756283309 @default.
- W2892103920 cites W2763260286 @default.
- W2892103920 cites W2786760387 @default.
- W2892103920 doi "https://doi.org/10.1007/978-3-319-99007-1_4" @default.
- W2892103920 hasPublicationYear "2018" @default.
- W2892103920 type Work @default.
- W2892103920 sameAs 2892103920 @default.
- W2892103920 citedByCount "6" @default.
- W2892103920 countsByYear W28921039202020 @default.
- W2892103920 countsByYear W28921039202021 @default.
- W2892103920 countsByYear W28921039202022 @default.
- W2892103920 countsByYear W28921039202023 @default.
- W2892103920 crossrefType "book-chapter" @default.
- W2892103920 hasAuthorship W2892103920A5025293830 @default.
- W2892103920 hasAuthorship W2892103920A5026248619 @default.
- W2892103920 hasAuthorship W2892103920A5088346696 @default.
- W2892103920 hasConcept C119857082 @default.
- W2892103920 hasConcept C12267149 @default.
- W2892103920 hasConcept C124101348 @default.
- W2892103920 hasConcept C154945302 @default.
- W2892103920 hasConcept C41008148 @default.
- W2892103920 hasConcept C45804977 @default.
- W2892103920 hasConcept C52001869 @default.
- W2892103920 hasConcept C84525736 @default.
- W2892103920 hasConceptScore W2892103920C119857082 @default.
- W2892103920 hasConceptScore W2892103920C12267149 @default.
- W2892103920 hasConceptScore W2892103920C124101348 @default.
- W2892103920 hasConceptScore W2892103920C154945302 @default.
- W2892103920 hasConceptScore W2892103920C41008148 @default.
- W2892103920 hasConceptScore W2892103920C45804977 @default.
- W2892103920 hasConceptScore W2892103920C52001869 @default.
- W2892103920 hasConceptScore W2892103920C84525736 @default.
- W2892103920 hasLocation W28921039201 @default.
- W2892103920 hasOpenAccess W2892103920 @default.
- W2892103920 hasPrimaryLocation W28921039201 @default.
- W2892103920 hasRelatedWork W2595988085 @default.
- W2892103920 hasRelatedWork W3127425528 @default.
- W2892103920 hasRelatedWork W3143658565 @default.
- W2892103920 hasRelatedWork W3161569253 @default.
- W2892103920 hasRelatedWork W3186233728 @default.
- W2892103920 hasRelatedWork W3204641204 @default.
- W2892103920 hasRelatedWork W4205958290 @default.
- W2892103920 hasRelatedWork W4214820172 @default.
- W2892103920 hasRelatedWork W4283016678 @default.
- W2892103920 hasRelatedWork W4361795583 @default.
- W2892103920 isParatext "false" @default.
- W2892103920 isRetracted "false" @default.
- W2892103920 magId "2892103920" @default.
- W2892103920 workType "book-chapter" @default.