Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892139737> ?p ?o ?g. }
- W2892139737 endingPage "496" @default.
- W2892139737 startingPage "477" @default.
- W2892139737 abstract "Influence maximization aims to select a subset of top-k influential nodes to maximize the influence propagation, and it remains an open research topic of viral marketing and social network analysis. Submodularity-based methods including greedy algorithm can provide solutions with performance guarantee, but the time complexity is unbearable especially in large-scale networks. Meanwhile, conventional centrality-based measures cannot provide steady performance for multiple influential nodes identification. In this paper, we propose an improved discrete particle swarm optimization with an enhanced network topology-based strategy for influence maximization. According to the strategy, the k influential nodes in a temporary optimal seed set are recombined firstly in ascending order by degree metric to let the nodes with lower degree centrality exploit more influential neighbors preferentially. Secondly, a local greedy strategy is applied to replace the current node with the most influential node from the direct neighbor set of each node from the temporary seed set. The experimental results conducted in six social networks under independent cascade model show that the proposed algorithm outperforms typical centrality-based heuristics, and achieves comparable results to greedy algorithm but with less time complexity." @default.
- W2892139737 created "2018-09-27" @default.
- W2892139737 creator A5001371066 @default.
- W2892139737 creator A5006097801 @default.
- W2892139737 creator A5018969310 @default.
- W2892139737 creator A5025831186 @default.
- W2892139737 creator A5062004258 @default.
- W2892139737 creator A5088612057 @default.
- W2892139737 creator A5088800065 @default.
- W2892139737 date "2019-01-01" @default.
- W2892139737 modified "2023-10-13" @default.
- W2892139737 title "Identification of top-k influential nodes based on enhanced discrete particle swarm optimization for influence maximization" @default.
- W2892139737 cites W137627111 @default.
- W2892139737 cites W1973371241 @default.
- W2892139737 cites W1991791873 @default.
- W2892139737 cites W2005907218 @default.
- W2892139737 cites W2006021775 @default.
- W2892139737 cites W2013746780 @default.
- W2892139737 cites W2015953751 @default.
- W2892139737 cites W2028104603 @default.
- W2892139737 cites W2030628432 @default.
- W2892139737 cites W2042123098 @default.
- W2892139737 cites W2056944867 @default.
- W2892139737 cites W2061820396 @default.
- W2892139737 cites W2074132047 @default.
- W2892139737 cites W2108858998 @default.
- W2892139737 cites W2109364787 @default.
- W2892139737 cites W2133131640 @default.
- W2892139737 cites W2141403143 @default.
- W2892139737 cites W2154897810 @default.
- W2892139737 cites W2155167324 @default.
- W2892139737 cites W2156773695 @default.
- W2892139737 cites W2165299997 @default.
- W2892139737 cites W2171707538 @default.
- W2892139737 cites W2396832258 @default.
- W2892139737 cites W2464384554 @default.
- W2892139737 cites W2526426687 @default.
- W2892139737 cites W2529103813 @default.
- W2892139737 cites W2531108548 @default.
- W2892139737 cites W2547451030 @default.
- W2892139737 cites W2548124216 @default.
- W2892139737 cites W2564914645 @default.
- W2892139737 cites W2565089265 @default.
- W2892139737 cites W2588367588 @default.
- W2892139737 cites W2598286865 @default.
- W2892139737 cites W2619906413 @default.
- W2892139737 cites W2672128364 @default.
- W2892139737 cites W2766133347 @default.
- W2892139737 cites W2797495909 @default.
- W2892139737 cites W3101413764 @default.
- W2892139737 cites W3103616114 @default.
- W2892139737 cites W3103657871 @default.
- W2892139737 cites W3105091379 @default.
- W2892139737 cites W83376015 @default.
- W2892139737 doi "https://doi.org/10.1016/j.physa.2018.09.040" @default.
- W2892139737 hasPublicationYear "2019" @default.
- W2892139737 type Work @default.
- W2892139737 sameAs 2892139737 @default.
- W2892139737 citedByCount "36" @default.
- W2892139737 countsByYear W28921397372019 @default.
- W2892139737 countsByYear W28921397372020 @default.
- W2892139737 countsByYear W28921397372021 @default.
- W2892139737 countsByYear W28921397372022 @default.
- W2892139737 countsByYear W28921397372023 @default.
- W2892139737 crossrefType "journal-article" @default.
- W2892139737 hasAuthorship W2892139737A5001371066 @default.
- W2892139737 hasAuthorship W2892139737A5006097801 @default.
- W2892139737 hasAuthorship W2892139737A5018969310 @default.
- W2892139737 hasAuthorship W2892139737A5025831186 @default.
- W2892139737 hasAuthorship W2892139737A5062004258 @default.
- W2892139737 hasAuthorship W2892139737A5088612057 @default.
- W2892139737 hasAuthorship W2892139737A5088800065 @default.
- W2892139737 hasConcept C11413529 @default.
- W2892139737 hasConcept C114614502 @default.
- W2892139737 hasConcept C116834253 @default.
- W2892139737 hasConcept C117045392 @default.
- W2892139737 hasConcept C126255220 @default.
- W2892139737 hasConcept C127413603 @default.
- W2892139737 hasConcept C127705205 @default.
- W2892139737 hasConcept C136764020 @default.
- W2892139737 hasConcept C165696696 @default.
- W2892139737 hasConcept C176217482 @default.
- W2892139737 hasConcept C177264268 @default.
- W2892139737 hasConcept C187008535 @default.
- W2892139737 hasConcept C199360897 @default.
- W2892139737 hasConcept C21547014 @default.
- W2892139737 hasConcept C2776330181 @default.
- W2892139737 hasConcept C33923547 @default.
- W2892139737 hasConcept C38652104 @default.
- W2892139737 hasConcept C41008148 @default.
- W2892139737 hasConcept C51823790 @default.
- W2892139737 hasConcept C518677369 @default.
- W2892139737 hasConcept C53811970 @default.
- W2892139737 hasConcept C59822182 @default.
- W2892139737 hasConcept C62611344 @default.
- W2892139737 hasConcept C66938386 @default.
- W2892139737 hasConcept C85617194 @default.
- W2892139737 hasConcept C86803240 @default.