Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892162443> ?p ?o ?g. }
- W2892162443 endingPage "5196" @default.
- W2892162443 startingPage "5186" @default.
- W2892162443 abstract "Photon counting detectors (PCDs) are being introduced in advanced x-ray computed tomography (CT) scanners. From a single PCD-CT acquisition, multiple images can be reconstructed, each based on only a part of the original x-ray spectrum. In this study, we investigated whether PCD-CT can be used to estimate stopping power ratios (SPRs) for proton therapy treatment planning, both by comparing to other SPR methods proposed for single energy CT (SECT) and dual energy CT (DECT) as well as to experimental measurements.A previously developed DECT-based SPR estimation method was adapted to PCD-CT data, by adjusting the estimation equations to allow for more energy spectra. The method was calibrated directly on noisy data to increase the robustness toward image noise. The new PCD SPR estimation method was tested in theoretical calculations as well as in an experimental setup, using both four and two energy bin PCD-CT images, and through comparison to two other SPR methods proposed for SECT and DECT. These two methods were also evaluated on PCD-CT images, full spectrum (one-bin) or two-bin images, respectively. In a theoretical framework, we evaluated the effect of patient-specific tissue variations (density and elemental composition) and image noise on the SPR accuracy; the latter effect was assessed by applying three different noise levels (low, medium, and high noise). SPR estimates derived using real PCD-CT images were compared to experimentally measured SPRs in nine organic tissue samples, including fat, muscle, and bone tissues.For the theoretical calculations, the root-mean-square error (RMSE) of the SPR estimation was 0.1% for the new PCD method using both two and four energy bins, compared to 0.2% and 0.7% for the DECT- and SECT-based method, respectively. The PCD method was found to be very robust toward CT image noise, with a RMSE of 2.7% when high noise was added to the CT numbers. Introducing tissue variations, the RMSE only increased to 0.5%; even when adding high image noise to the changed tissues, the RMSE stayed within 3.1%. In the experimental measurements, the RMSE over the nine tissue samples was 0.8% when using two energy bins, and 1.0% for the four-bin images.In all tested cases, the new PCD method produced similar or better results than the SECT- and DECT-based methods, showing an overall improvement of the SPR accuracy. This study thus demonstrated that PCD-CT scans will be a qualified candidate for SPR estimations." @default.
- W2892162443 created "2018-09-27" @default.
- W2892162443 creator A5009690128 @default.
- W2892162443 creator A5014143201 @default.
- W2892162443 creator A5027235876 @default.
- W2892162443 creator A5029067734 @default.
- W2892162443 creator A5037378405 @default.
- W2892162443 creator A5055290324 @default.
- W2892162443 creator A5065134129 @default.
- W2892162443 creator A5067668310 @default.
- W2892162443 date "2018-10-01" @default.
- W2892162443 modified "2023-10-17" @default.
- W2892162443 title "Theoretical and experimental analysis of photon counting detector CT for proton stopping power prediction" @default.
- W2892162443 cites W1501450030 @default.
- W2892162443 cites W168591761 @default.
- W2892162443 cites W1923826647 @default.
- W2892162443 cites W1968142861 @default.
- W2892162443 cites W2000764677 @default.
- W2892162443 cites W2001881071 @default.
- W2892162443 cites W2015282797 @default.
- W2892162443 cites W2017441482 @default.
- W2892162443 cites W2026421256 @default.
- W2892162443 cites W2070665556 @default.
- W2892162443 cites W2072647673 @default.
- W2892162443 cites W2122111042 @default.
- W2892162443 cites W2139684042 @default.
- W2892162443 cites W2140836580 @default.
- W2892162443 cites W2223518290 @default.
- W2892162443 cites W2225904748 @default.
- W2892162443 cites W2226061686 @default.
- W2892162443 cites W2289761041 @default.
- W2892162443 cites W2293166549 @default.
- W2892162443 cites W2293587253 @default.
- W2892162443 cites W2304192167 @default.
- W2892162443 cites W2311373680 @default.
- W2892162443 cites W2341786678 @default.
- W2892162443 cites W2487038850 @default.
- W2892162443 cites W2492099543 @default.
- W2892162443 cites W2516922013 @default.
- W2892162443 cites W2522994896 @default.
- W2892162443 cites W2530938446 @default.
- W2892162443 cites W2536323247 @default.
- W2892162443 cites W2541015677 @default.
- W2892162443 cites W2589889231 @default.
- W2892162443 cites W2598431361 @default.
- W2892162443 cites W2741845246 @default.
- W2892162443 cites W2750898005 @default.
- W2892162443 cites W2753385085 @default.
- W2892162443 cites W2755347499 @default.
- W2892162443 cites W2765309731 @default.
- W2892162443 cites W2766495831 @default.
- W2892162443 cites W2769034132 @default.
- W2892162443 cites W2792436024 @default.
- W2892162443 cites W2793752697 @default.
- W2892162443 cites W2799495634 @default.
- W2892162443 cites W2799833871 @default.
- W2892162443 cites W3106095674 @default.
- W2892162443 doi "https://doi.org/10.1002/mp.13173" @default.
- W2892162443 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6234096" @default.
- W2892162443 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30191573" @default.
- W2892162443 hasPublicationYear "2018" @default.
- W2892162443 type Work @default.
- W2892162443 sameAs 2892162443 @default.
- W2892162443 citedByCount "11" @default.
- W2892162443 countsByYear W28921624432020 @default.
- W2892162443 countsByYear W28921624432021 @default.
- W2892162443 countsByYear W28921624432022 @default.
- W2892162443 countsByYear W28921624432023 @default.
- W2892162443 crossrefType "journal-article" @default.
- W2892162443 hasAuthorship W2892162443A5009690128 @default.
- W2892162443 hasAuthorship W2892162443A5014143201 @default.
- W2892162443 hasAuthorship W2892162443A5027235876 @default.
- W2892162443 hasAuthorship W2892162443A5029067734 @default.
- W2892162443 hasAuthorship W2892162443A5037378405 @default.
- W2892162443 hasAuthorship W2892162443A5055290324 @default.
- W2892162443 hasAuthorship W2892162443A5065134129 @default.
- W2892162443 hasAuthorship W2892162443A5067668310 @default.
- W2892162443 hasBestOaLocation W28921624432 @default.
- W2892162443 hasConcept C105795698 @default.
- W2892162443 hasConcept C11413529 @default.
- W2892162443 hasConcept C115961682 @default.
- W2892162443 hasConcept C120665830 @default.
- W2892162443 hasConcept C121332964 @default.
- W2892162443 hasConcept C141379421 @default.
- W2892162443 hasConcept C150432741 @default.
- W2892162443 hasConcept C154945302 @default.
- W2892162443 hasConcept C156273044 @default.
- W2892162443 hasConcept C163716698 @default.
- W2892162443 hasConcept C168834538 @default.
- W2892162443 hasConcept C186370098 @default.
- W2892162443 hasConcept C2779244869 @default.
- W2892162443 hasConcept C2781402376 @default.
- W2892162443 hasConcept C2989005 @default.
- W2892162443 hasConcept C33923547 @default.
- W2892162443 hasConcept C35772409 @default.
- W2892162443 hasConcept C41008148 @default.
- W2892162443 hasConcept C555944384 @default.
- W2892162443 hasConcept C71924100 @default.