Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892176301> ?p ?o ?g. }
- W2892176301 endingPage "2506" @default.
- W2892176301 startingPage "2498" @default.
- W2892176301 abstract "Fusion of large-scale information is the key strategy for the complete understanding of many nonlinear and complicated industrial and medical processes. This paper presents the proposed multiview (MV) feature fusion-based learning generalizing discriminant correlation analysis (DCA) for assessment and diagnosis of nonlinear processes. The core focus of this algorithm is to explore the effectiveness of MV information embedding in learning models and viable implementation in real-time applications. Our method is capable of incorporating high-dimensional information inherent in MV features generated from available inputs using the proposed DCA-based scheme. The algorithm is tested with two real-time electromyogram data sets, which include three categories of nonlinear data-amyotrophic lateral sclerosis, myopathy, and healthy control subjects. A set of MV features is generated in both the time and the wavelet domain for all of the study groups. The features are subjected to DCA projection and optimization and obtained low-order features are concatenated using DCA-based fusion scheme. The discriminant features are applied for the statistical analysis and the model validation. The model achieves an accuracy of 99.03% with a specificity of 99.58% and sensitivities of 98.50% and 97.59%. However, the accuracy over the second data set is 100% with sensitivities of 100% and the specificity of 100%. Results are further compared with the state-of-the-art methods. The proposed scheme is promising and outperforms many state-of-the-art methods, and thus it ensures the faithfulness for industrial applications." @default.
- W2892176301 created "2018-09-27" @default.
- W2892176301 creator A5028208097 @default.
- W2892176301 creator A5045574242 @default.
- W2892176301 creator A5053400032 @default.
- W2892176301 creator A5054002012 @default.
- W2892176301 date "2019-07-01" @default.
- W2892176301 modified "2023-09-30" @default.
- W2892176301 title "A Multiview Discriminant Feature Fusion-Based Nonlinear Process Assessment and Diagnosis: Application to Medical Diagnosis" @default.
- W2892176301 cites W1539811621 @default.
- W2892176301 cites W1541250240 @default.
- W2892176301 cites W1981173169 @default.
- W2892176301 cites W1984983329 @default.
- W2892176301 cites W2001061109 @default.
- W2892176301 cites W2012297890 @default.
- W2892176301 cites W2025341678 @default.
- W2892176301 cites W2038420319 @default.
- W2892176301 cites W2042608483 @default.
- W2892176301 cites W2071207147 @default.
- W2892176301 cites W2081748412 @default.
- W2892176301 cites W2093265755 @default.
- W2892176301 cites W2118542129 @default.
- W2892176301 cites W2122936696 @default.
- W2892176301 cites W2126950562 @default.
- W2892176301 cites W2138962073 @default.
- W2892176301 cites W2149250984 @default.
- W2892176301 cites W2166782149 @default.
- W2892176301 cites W2186500555 @default.
- W2892176301 cites W2293850855 @default.
- W2892176301 cites W2405680777 @default.
- W2892176301 cites W2409983459 @default.
- W2892176301 cites W2504270968 @default.
- W2892176301 cites W2522467422 @default.
- W2892176301 cites W2528751697 @default.
- W2892176301 cites W2561981131 @default.
- W2892176301 cites W2594776646 @default.
- W2892176301 cites W2624184089 @default.
- W2892176301 cites W2768355925 @default.
- W2892176301 cites W2789326956 @default.
- W2892176301 cites W2793841943 @default.
- W2892176301 cites W348267796 @default.
- W2892176301 cites W4240787498 @default.
- W2892176301 doi "https://doi.org/10.1109/tim.2018.2866744" @default.
- W2892176301 hasPublicationYear "2019" @default.
- W2892176301 type Work @default.
- W2892176301 sameAs 2892176301 @default.
- W2892176301 citedByCount "11" @default.
- W2892176301 countsByYear W28921763012019 @default.
- W2892176301 countsByYear W28921763012020 @default.
- W2892176301 countsByYear W28921763012021 @default.
- W2892176301 countsByYear W28921763012022 @default.
- W2892176301 crossrefType "journal-article" @default.
- W2892176301 hasAuthorship W2892176301A5028208097 @default.
- W2892176301 hasAuthorship W2892176301A5045574242 @default.
- W2892176301 hasAuthorship W2892176301A5053400032 @default.
- W2892176301 hasAuthorship W2892176301A5054002012 @default.
- W2892176301 hasConcept C119857082 @default.
- W2892176301 hasConcept C121332964 @default.
- W2892176301 hasConcept C124101348 @default.
- W2892176301 hasConcept C138885662 @default.
- W2892176301 hasConcept C153180895 @default.
- W2892176301 hasConcept C154945302 @default.
- W2892176301 hasConcept C158622935 @default.
- W2892176301 hasConcept C2776401178 @default.
- W2892176301 hasConcept C33954974 @default.
- W2892176301 hasConcept C41008148 @default.
- W2892176301 hasConcept C41608201 @default.
- W2892176301 hasConcept C41895202 @default.
- W2892176301 hasConcept C52622490 @default.
- W2892176301 hasConcept C62520636 @default.
- W2892176301 hasConcept C69738355 @default.
- W2892176301 hasConceptScore W2892176301C119857082 @default.
- W2892176301 hasConceptScore W2892176301C121332964 @default.
- W2892176301 hasConceptScore W2892176301C124101348 @default.
- W2892176301 hasConceptScore W2892176301C138885662 @default.
- W2892176301 hasConceptScore W2892176301C153180895 @default.
- W2892176301 hasConceptScore W2892176301C154945302 @default.
- W2892176301 hasConceptScore W2892176301C158622935 @default.
- W2892176301 hasConceptScore W2892176301C2776401178 @default.
- W2892176301 hasConceptScore W2892176301C33954974 @default.
- W2892176301 hasConceptScore W2892176301C41008148 @default.
- W2892176301 hasConceptScore W2892176301C41608201 @default.
- W2892176301 hasConceptScore W2892176301C41895202 @default.
- W2892176301 hasConceptScore W2892176301C52622490 @default.
- W2892176301 hasConceptScore W2892176301C62520636 @default.
- W2892176301 hasConceptScore W2892176301C69738355 @default.
- W2892176301 hasIssue "7" @default.
- W2892176301 hasLocation W28921763011 @default.
- W2892176301 hasOpenAccess W2892176301 @default.
- W2892176301 hasPrimaryLocation W28921763011 @default.
- W2892176301 hasRelatedWork W1968332688 @default.
- W2892176301 hasRelatedWork W2022684485 @default.
- W2892176301 hasRelatedWork W203536286 @default.
- W2892176301 hasRelatedWork W2134472250 @default.
- W2892176301 hasRelatedWork W2146076056 @default.
- W2892176301 hasRelatedWork W2350891938 @default.
- W2892176301 hasRelatedWork W2380927352 @default.
- W2892176301 hasRelatedWork W2546942002 @default.