Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892189043> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2892189043 abstract "In e-commerce platforms, the question-answering style reviews are emerging, which usually contains much aspect-related information about products. In this paper, Question-answering (QA) aspect classification is a new task that aims to identify the aspect category of a given QA text pair. According to characteristics of QA-style reviews, we draw up annotation guidelines and build a high-consistency annotated corpus for QA aspect classification. Then, we propose a recurrent neural network based on multi-attention representation to tackle this new task. Specifically, we firstly segment the answer text into clauses, and then leverage the multi-attention representation layer to match the question text with clauses inside answer text and generate multiple attention representations of the question text, which extends feature information of the question text. The experimental results demonstrate that our method for QA aspect classification, which is based on multi-attention representation, can make the most of useful information in answer texts and perform better than some strong baselines in QA aspect classification." @default.
- W2892189043 created "2018-09-27" @default.
- W2892189043 creator A5003885809 @default.
- W2892189043 creator A5012276763 @default.
- W2892189043 creator A5041463919 @default.
- W2892189043 creator A5055224811 @default.
- W2892189043 creator A5067221645 @default.
- W2892189043 date "2018-01-01" @default.
- W2892189043 modified "2023-09-27" @default.
- W2892189043 title "Question-Answering Aspect Classification with Multi-attention Representation" @default.
- W2892189043 cites W1832693441 @default.
- W2892189043 cites W2005422315 @default.
- W2892189043 cites W2164672510 @default.
- W2892189043 cites W2251777082 @default.
- W2892189043 cites W2562607067 @default.
- W2892189043 cites W2739677115 @default.
- W2892189043 cites W2741252866 @default.
- W2892189043 cites W2790662531 @default.
- W2892189043 cites W2963936679 @default.
- W2892189043 doi "https://doi.org/10.1007/978-3-030-01012-6_7" @default.
- W2892189043 hasPublicationYear "2018" @default.
- W2892189043 type Work @default.
- W2892189043 sameAs 2892189043 @default.
- W2892189043 citedByCount "1" @default.
- W2892189043 countsByYear W28921890432020 @default.
- W2892189043 crossrefType "book-chapter" @default.
- W2892189043 hasAuthorship W2892189043A5003885809 @default.
- W2892189043 hasAuthorship W2892189043A5012276763 @default.
- W2892189043 hasAuthorship W2892189043A5041463919 @default.
- W2892189043 hasAuthorship W2892189043A5055224811 @default.
- W2892189043 hasAuthorship W2892189043A5067221645 @default.
- W2892189043 hasConcept C138885662 @default.
- W2892189043 hasConcept C153083717 @default.
- W2892189043 hasConcept C154945302 @default.
- W2892189043 hasConcept C162324750 @default.
- W2892189043 hasConcept C17744445 @default.
- W2892189043 hasConcept C187736073 @default.
- W2892189043 hasConcept C199539241 @default.
- W2892189043 hasConcept C204321447 @default.
- W2892189043 hasConcept C23123220 @default.
- W2892189043 hasConcept C2776321320 @default.
- W2892189043 hasConcept C2776359362 @default.
- W2892189043 hasConcept C2776401178 @default.
- W2892189043 hasConcept C2776436953 @default.
- W2892189043 hasConcept C2780451532 @default.
- W2892189043 hasConcept C41008148 @default.
- W2892189043 hasConcept C41895202 @default.
- W2892189043 hasConcept C44291984 @default.
- W2892189043 hasConcept C94625758 @default.
- W2892189043 hasConceptScore W2892189043C138885662 @default.
- W2892189043 hasConceptScore W2892189043C153083717 @default.
- W2892189043 hasConceptScore W2892189043C154945302 @default.
- W2892189043 hasConceptScore W2892189043C162324750 @default.
- W2892189043 hasConceptScore W2892189043C17744445 @default.
- W2892189043 hasConceptScore W2892189043C187736073 @default.
- W2892189043 hasConceptScore W2892189043C199539241 @default.
- W2892189043 hasConceptScore W2892189043C204321447 @default.
- W2892189043 hasConceptScore W2892189043C23123220 @default.
- W2892189043 hasConceptScore W2892189043C2776321320 @default.
- W2892189043 hasConceptScore W2892189043C2776359362 @default.
- W2892189043 hasConceptScore W2892189043C2776401178 @default.
- W2892189043 hasConceptScore W2892189043C2776436953 @default.
- W2892189043 hasConceptScore W2892189043C2780451532 @default.
- W2892189043 hasConceptScore W2892189043C41008148 @default.
- W2892189043 hasConceptScore W2892189043C41895202 @default.
- W2892189043 hasConceptScore W2892189043C44291984 @default.
- W2892189043 hasConceptScore W2892189043C94625758 @default.
- W2892189043 hasLocation W28921890431 @default.
- W2892189043 hasOpenAccess W2892189043 @default.
- W2892189043 hasPrimaryLocation W28921890431 @default.
- W2892189043 hasRelatedWork W1480949871 @default.
- W2892189043 hasRelatedWork W1544176659 @default.
- W2892189043 hasRelatedWork W2022290196 @default.
- W2892189043 hasRelatedWork W2102941498 @default.
- W2892189043 hasRelatedWork W2334625099 @default.
- W2892189043 hasRelatedWork W2798786641 @default.
- W2892189043 hasRelatedWork W2804916561 @default.
- W2892189043 hasRelatedWork W2868095129 @default.
- W2892189043 hasRelatedWork W2900693018 @default.
- W2892189043 hasRelatedWork W2916264245 @default.
- W2892189043 hasRelatedWork W2921324918 @default.
- W2892189043 hasRelatedWork W2962927471 @default.
- W2892189043 hasRelatedWork W3030214491 @default.
- W2892189043 hasRelatedWork W3090028958 @default.
- W2892189043 hasRelatedWork W3099221492 @default.
- W2892189043 hasRelatedWork W3117289850 @default.
- W2892189043 hasRelatedWork W3153110156 @default.
- W2892189043 hasRelatedWork W3170936075 @default.
- W2892189043 hasRelatedWork W3172747961 @default.
- W2892189043 hasRelatedWork W3206785124 @default.
- W2892189043 isParatext "false" @default.
- W2892189043 isRetracted "false" @default.
- W2892189043 magId "2892189043" @default.
- W2892189043 workType "book-chapter" @default.