Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892209339> ?p ?o ?g. }
- W2892209339 endingPage "1113" @default.
- W2892209339 startingPage "1097" @default.
- W2892209339 abstract "Abstract. Long-term exposure to particulate matter (PM) with aerodynamic diameters < 10 (PM10) and 2.5 µm (PM2.5) has negative effects on human health. Although station-based PM monitoring has been conducted around the world, it is still challenging to provide spatially continuous PM information for vast areas at high spatial resolution. Satellite-derived aerosol information such as aerosol optical depth (AOD) has been frequently used to investigate ground-level PM concentrations. In this study, we combined multiple satellite-derived products including AOD with model-based meteorological parameters (i.e., dew-point temperature, wind speed, surface pressure, planetary boundary layer height, and relative humidity) and emission parameters (i.e., NO, NH3, SO2, primary organic aerosol (POA), and HCHO) to estimate surface PM concentrations over South Korea. Random forest (RF) machine learning was used to estimate both PM10 and PM2.5 concentrations with a total of 32 parameters for 2015–2016. The results show that the RF-based models produced good performance resulting in R2 values of 0.78 and 0.73 and root mean square errors (RMSEs) of 17.08 and 8.25 µg m−3 for PM10 and PM2.5, respectively. In particular, the proposed models successfully estimated high PM concentrations. AOD was identified as the most significant for estimating ground-level PM concentrations, followed by wind speed, solar radiation, and dew-point temperature. The use of aerosol information derived from a geostationary satellite sensor (i.e., Geostationary Ocean Color Imager, GOCI) resulted in slightly higher accuracy for estimating PM concentrations than that from a polar-orbiting sensor system (i.e., the Moderate Resolution Imaging Spectroradiometer, MODIS). The proposed RF models yielded better performance than the process-based approaches, particularly in improving on the underestimation of the process-based models (i.e., GEOS-Chem and the Community Multiscale Air Quality Modeling System, CMAQ)." @default.
- W2892209339 created "2018-09-27" @default.
- W2892209339 creator A5007967726 @default.
- W2892209339 creator A5008104727 @default.
- W2892209339 creator A5009722612 @default.
- W2892209339 creator A5027270746 @default.
- W2892209339 creator A5041792310 @default.
- W2892209339 creator A5049872669 @default.
- W2892209339 creator A5050163637 @default.
- W2892209339 creator A5061110444 @default.
- W2892209339 creator A5062279724 @default.
- W2892209339 creator A5069161853 @default.
- W2892209339 creator A5069165441 @default.
- W2892209339 date "2019-01-28" @default.
- W2892209339 modified "2023-10-16" @default.
- W2892209339 title "Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea" @default.
- W2892209339 cites W1832138061 @default.
- W2892209339 cites W1970486901 @default.
- W2892209339 cites W1973159294 @default.
- W2892209339 cites W1978729030 @default.
- W2892209339 cites W1986155020 @default.
- W2892209339 cites W1995398010 @default.
- W2892209339 cites W2010821940 @default.
- W2892209339 cites W2015698815 @default.
- W2892209339 cites W2018255156 @default.
- W2892209339 cites W2026067901 @default.
- W2892209339 cites W2031528200 @default.
- W2892209339 cites W2039740466 @default.
- W2892209339 cites W2042692910 @default.
- W2892209339 cites W2069977802 @default.
- W2892209339 cites W2070586061 @default.
- W2892209339 cites W2070861023 @default.
- W2892209339 cites W2077520869 @default.
- W2892209339 cites W2079702179 @default.
- W2892209339 cites W2089164331 @default.
- W2892209339 cites W2090436332 @default.
- W2892209339 cites W2103977502 @default.
- W2892209339 cites W2105723189 @default.
- W2892209339 cites W2108079253 @default.
- W2892209339 cites W2110673467 @default.
- W2892209339 cites W2110885569 @default.
- W2892209339 cites W2124155822 @default.
- W2892209339 cites W2133088826 @default.
- W2892209339 cites W2148099625 @default.
- W2892209339 cites W2162761156 @default.
- W2892209339 cites W2174505781 @default.
- W2892209339 cites W2295859130 @default.
- W2892209339 cites W2309602110 @default.
- W2892209339 cites W2331855105 @default.
- W2892209339 cites W2417531352 @default.
- W2892209339 cites W2461952480 @default.
- W2892209339 cites W2496225726 @default.
- W2892209339 cites W2509762016 @default.
- W2892209339 cites W2518030137 @default.
- W2892209339 cites W2526273574 @default.
- W2892209339 cites W2557097209 @default.
- W2892209339 cites W2563118026 @default.
- W2892209339 cites W2567586762 @default.
- W2892209339 cites W2588978790 @default.
- W2892209339 cites W2593356872 @default.
- W2892209339 cites W2602989882 @default.
- W2892209339 cites W2610242456 @default.
- W2892209339 cites W2616493255 @default.
- W2892209339 cites W2617645388 @default.
- W2892209339 cites W2620300958 @default.
- W2892209339 cites W2734691593 @default.
- W2892209339 cites W2737242952 @default.
- W2892209339 cites W2742304853 @default.
- W2892209339 cites W2758156207 @default.
- W2892209339 cites W2776069591 @default.
- W2892209339 cites W2783382870 @default.
- W2892209339 cites W2790202404 @default.
- W2892209339 cites W2792601978 @default.
- W2892209339 cites W2793091350 @default.
- W2892209339 cites W2796108540 @default.
- W2892209339 cites W2800133189 @default.
- W2892209339 cites W2807984541 @default.
- W2892209339 cites W2911964244 @default.
- W2892209339 cites W4235754922 @default.
- W2892209339 cites W621873917 @default.
- W2892209339 cites W960576833 @default.
- W2892209339 doi "https://doi.org/10.5194/acp-19-1097-2019" @default.
- W2892209339 hasPublicationYear "2019" @default.
- W2892209339 type Work @default.
- W2892209339 sameAs 2892209339 @default.
- W2892209339 citedByCount "64" @default.
- W2892209339 countsByYear W28922093392019 @default.
- W2892209339 countsByYear W28922093392020 @default.
- W2892209339 countsByYear W28922093392021 @default.
- W2892209339 countsByYear W28922093392022 @default.
- W2892209339 countsByYear W28922093392023 @default.
- W2892209339 crossrefType "journal-article" @default.
- W2892209339 hasAuthorship W2892209339A5007967726 @default.
- W2892209339 hasAuthorship W2892209339A5008104727 @default.
- W2892209339 hasAuthorship W2892209339A5009722612 @default.
- W2892209339 hasAuthorship W2892209339A5027270746 @default.
- W2892209339 hasAuthorship W2892209339A5041792310 @default.
- W2892209339 hasAuthorship W2892209339A5049872669 @default.