Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892217709> ?p ?o ?g. }
- W2892217709 endingPage "2497" @default.
- W2892217709 startingPage "2491" @default.
- W2892217709 abstract "Detecting fatigue driving from electroencephalogram (EEG) signals constitutes a challenging problem of continuing interest since fatigue driving has caused the majority of traffic accidents. We carry out a simulated driving experiment for EEG data acquisition. Then, we calculate the wavelet entropy under the alert and fatigue state, respectively, and find that the wavelet entropy gets an acceptable performance on classification. Despite that the traditional entropy-based methods have been successfully applied to detect EEG-based fatigue driving, how to improve the classification remains to be investigated. To solve this problem, we in this paper propose a novel relative wavelet entropy complex network (RWECN) for improving the classification accuracy. In particular, we infer the complex network by regarding each EEG channel as a node and determining the connections of nodes in terms of the relative wavelet entropy between the EEG signals. Then, we extract a series of network statistical measures to characterize the topological structure of the brain networks. We combine the wavelet entropy and RWECN statistical measures to form a feature vector for realizing the classification of different states through the Fisher linear discriminant analysis. The results suggest that our method allows obtaining intrinsic and effective features from fatigue EEG signals and enables to improve the classification accuracy of EEG-based fatigue driving." @default.
- W2892217709 created "2018-09-27" @default.
- W2892217709 creator A5004366207 @default.
- W2892217709 creator A5029925982 @default.
- W2892217709 creator A5032150204 @default.
- W2892217709 creator A5039451864 @default.
- W2892217709 creator A5057898837 @default.
- W2892217709 creator A5080578053 @default.
- W2892217709 creator A5082820311 @default.
- W2892217709 date "2019-07-01" @default.
- W2892217709 modified "2023-10-09" @default.
- W2892217709 title "Relative Wavelet Entropy Complex Network for Improving EEG-Based Fatigue Driving Classification" @default.
- W2892217709 cites W1154717539 @default.
- W2892217709 cites W1880111445 @default.
- W2892217709 cites W1965886953 @default.
- W2892217709 cites W1971668366 @default.
- W2892217709 cites W1981752077 @default.
- W2892217709 cites W1990271875 @default.
- W2892217709 cites W1992229700 @default.
- W2892217709 cites W1998711164 @default.
- W2892217709 cites W2005821483 @default.
- W2892217709 cites W2010643019 @default.
- W2892217709 cites W2015673256 @default.
- W2892217709 cites W2018924502 @default.
- W2892217709 cites W2024999295 @default.
- W2892217709 cites W2035998833 @default.
- W2892217709 cites W2043133488 @default.
- W2892217709 cites W2054257211 @default.
- W2892217709 cites W2055538060 @default.
- W2892217709 cites W2062388102 @default.
- W2892217709 cites W2064397958 @default.
- W2892217709 cites W2088473973 @default.
- W2892217709 cites W2102376611 @default.
- W2892217709 cites W2103007699 @default.
- W2892217709 cites W2105679011 @default.
- W2892217709 cites W2106706488 @default.
- W2892217709 cites W2107541057 @default.
- W2892217709 cites W2109713924 @default.
- W2892217709 cites W2133242303 @default.
- W2892217709 cites W2165731615 @default.
- W2892217709 cites W2167822639 @default.
- W2892217709 cites W2313354697 @default.
- W2892217709 cites W2315796184 @default.
- W2892217709 cites W2414309931 @default.
- W2892217709 cites W2518736501 @default.
- W2892217709 cites W2525948926 @default.
- W2892217709 cites W2566849809 @default.
- W2892217709 cites W2587875153 @default.
- W2892217709 cites W2606494656 @default.
- W2892217709 cites W2611975175 @default.
- W2892217709 cites W2743656938 @default.
- W2892217709 cites W2747383384 @default.
- W2892217709 cites W2762779464 @default.
- W2892217709 cites W2770728546 @default.
- W2892217709 cites W2771546113 @default.
- W2892217709 cites W2771747965 @default.
- W2892217709 cites W2784241349 @default.
- W2892217709 cites W2797503983 @default.
- W2892217709 cites W2892485325 @default.
- W2892217709 cites W3100130494 @default.
- W2892217709 cites W3101784999 @default.
- W2892217709 cites W3103589660 @default.
- W2892217709 cites W4245266152 @default.
- W2892217709 cites W605158663 @default.
- W2892217709 doi "https://doi.org/10.1109/tim.2018.2865842" @default.
- W2892217709 hasPublicationYear "2019" @default.
- W2892217709 type Work @default.
- W2892217709 sameAs 2892217709 @default.
- W2892217709 citedByCount "53" @default.
- W2892217709 countsByYear W28922177092018 @default.
- W2892217709 countsByYear W28922177092019 @default.
- W2892217709 countsByYear W28922177092020 @default.
- W2892217709 countsByYear W28922177092021 @default.
- W2892217709 countsByYear W28922177092022 @default.
- W2892217709 countsByYear W28922177092023 @default.
- W2892217709 crossrefType "journal-article" @default.
- W2892217709 hasAuthorship W2892217709A5004366207 @default.
- W2892217709 hasAuthorship W2892217709A5029925982 @default.
- W2892217709 hasAuthorship W2892217709A5032150204 @default.
- W2892217709 hasAuthorship W2892217709A5039451864 @default.
- W2892217709 hasAuthorship W2892217709A5057898837 @default.
- W2892217709 hasAuthorship W2892217709A5080578053 @default.
- W2892217709 hasAuthorship W2892217709A5082820311 @default.
- W2892217709 hasConcept C106301342 @default.
- W2892217709 hasConcept C118552586 @default.
- W2892217709 hasConcept C121332964 @default.
- W2892217709 hasConcept C12267149 @default.
- W2892217709 hasConcept C153180895 @default.
- W2892217709 hasConcept C154945302 @default.
- W2892217709 hasConcept C15744967 @default.
- W2892217709 hasConcept C196216189 @default.
- W2892217709 hasConcept C28490314 @default.
- W2892217709 hasConcept C41008148 @default.
- W2892217709 hasConcept C47432892 @default.
- W2892217709 hasConcept C522805319 @default.
- W2892217709 hasConcept C52622490 @default.
- W2892217709 hasConcept C62520636 @default.
- W2892217709 hasConcept C69738355 @default.