Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892238128> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2892238128 abstract "The code is for the Penalized Mixed-effects Decomposition (PMD) Method. The PMD method can decompose the profiles (curves/ functional data) into four components: fixed effects, normal effects, defective effects ,and noise. The PMD method can be used for the multichannel profile detection of in-line Raman spectra, and it can also be used for feature extraction of other signals (profiles/functional data). Reference:Yue, X., Yan, H., Park, J.G., Liang, Z., Shi, J., “A Wavelet-based Penalized Mixed Effects Decomposition for Multichannel Profile Monitoring Based on In-line Raman Spectroscopy”, IEEE Transactions on Automation Science and Engineering, (in press).Abstract of the paper:Modeling and analysis of profiles, especially high-dimension nonlinear profiles, is an important and challenging topic in statistical process control. Conventional mixed-effects models have several limitations in solving the multichannel profile detection problems for in-line Raman spectroscopy, such as the inability to separate defective information from random effects, computational inefficiency, and inability to handle high dimensional extracted coefficients. In this paper, a new wavelet-based penalized mixed-effects decomposition (PMD) method is proposed to solve the multichannel profile detection problem in Raman spectroscopy. The proposed PMD exploits a regularized high-dimensional regression with linear constraints to decompose the profiles into four parts: fixed effects, normal effects, defective effects, and signal-dependent noise. An optimization algorithm based on the accelerated proximal gradient (APG) is developed to do parameter estimation efficiently for the proposed model. Finally, the separated fixed effects coefficients, normal effects coefficients, and defective effects coefficients can be used to extract the quality features of fabrication consistency, within-sample uniformity, and defect information, respectively. Using a surrogated data analysis and a case study, we evaluated the performance of the proposed PMD method and demonstrated a better detection power with less computational time.Note to Practitioners— This paper was motivated by the need of implementing multichannel profile detection for Raman spectra to realize in-line process monitoring and quality control of continuous manufacturing of carbon nanotube buckypaper. Existing approaches, like the mixed-effects model or the smooth sparse decomposition method, cannot separate defective information in random effects effectively. This paper develops a penalized mixed-effects decomposition which decomposes Raman spectra into four components: fixed effects, normal effects, defective effects, and signal-dependent noise respectively. The first three components can be applied to monitor the fabrication consistency, degree of uniformity, and defect information of buckypaper, respectively. With this new approach, several quality features can be monitored simultaneously and the algorithm based on accelerated proximal gradient method can satisfy the computation speed requirement of in-line monitoring. This research provides a solid foundation for in-line process monitoring and quality control for scalable nanomanufacturing of carbon nanotube buckypaper. Furthermore, the developed methodology can be applied in the decomposition of other signal systems with fixed effects, normal and defective effects." @default.
- W2892238128 created "2018-09-27" @default.
- W2892238128 creator A5018763939 @default.
- W2892238128 date "2017-01-01" @default.
- W2892238128 modified "2023-09-23" @default.
- W2892238128 title "Penalized Mixed-Effects Decomposition (PMD) for Functional Data" @default.
- W2892238128 doi "https://doi.org/10.24433/co.b26f4008-98d9-4a4c-a869-0f523d389d6e" @default.
- W2892238128 hasPublicationYear "2017" @default.
- W2892238128 type Work @default.
- W2892238128 sameAs 2892238128 @default.
- W2892238128 citedByCount "0" @default.
- W2892238128 crossrefType "journal-article" @default.
- W2892238128 hasAuthorship W2892238128A5018763939 @default.
- W2892238128 hasConcept C11413529 @default.
- W2892238128 hasConcept C115961682 @default.
- W2892238128 hasConcept C154945302 @default.
- W2892238128 hasConcept C33923547 @default.
- W2892238128 hasConcept C41008148 @default.
- W2892238128 hasConcept C47432892 @default.
- W2892238128 hasConcept C99498987 @default.
- W2892238128 hasConceptScore W2892238128C11413529 @default.
- W2892238128 hasConceptScore W2892238128C115961682 @default.
- W2892238128 hasConceptScore W2892238128C154945302 @default.
- W2892238128 hasConceptScore W2892238128C33923547 @default.
- W2892238128 hasConceptScore W2892238128C41008148 @default.
- W2892238128 hasConceptScore W2892238128C47432892 @default.
- W2892238128 hasConceptScore W2892238128C99498987 @default.
- W2892238128 hasLocation W28922381281 @default.
- W2892238128 hasOpenAccess W2892238128 @default.
- W2892238128 hasPrimaryLocation W28922381281 @default.
- W2892238128 hasRelatedWork W1963872842 @default.
- W2892238128 hasRelatedWork W2019737081 @default.
- W2892238128 hasRelatedWork W2030389928 @default.
- W2892238128 hasRelatedWork W2034018462 @default.
- W2892238128 hasRelatedWork W2143307715 @default.
- W2892238128 hasRelatedWork W2146043746 @default.
- W2892238128 hasRelatedWork W2152124231 @default.
- W2892238128 hasRelatedWork W2160149716 @default.
- W2892238128 hasRelatedWork W2166581432 @default.
- W2892238128 hasRelatedWork W2392242217 @default.
- W2892238128 hasRelatedWork W2406494515 @default.
- W2892238128 hasRelatedWork W2517042913 @default.
- W2892238128 hasRelatedWork W2734826483 @default.
- W2892238128 hasRelatedWork W2766938794 @default.
- W2892238128 hasRelatedWork W2773962687 @default.
- W2892238128 hasRelatedWork W2807880429 @default.
- W2892238128 hasRelatedWork W2944376361 @default.
- W2892238128 hasRelatedWork W2962801302 @default.
- W2892238128 hasRelatedWork W3086156999 @default.
- W2892238128 hasRelatedWork W3131573026 @default.
- W2892238128 isParatext "false" @default.
- W2892238128 isRetracted "false" @default.
- W2892238128 magId "2892238128" @default.
- W2892238128 workType "article" @default.