Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892238237> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2892238237 abstract "When Minsky and Chomsky were at Harvard in the 1950s, they started out their careers questioning a number of machine learning methods that have since regained popularity. Minsky’s Perceptrons was a reaction to neural nets and Chomsky’s Syntactic Structures was a reaction to ngram language models. Many of their objections are being ignored and forgotten (perhaps for good reasons, and perhaps not). While their arguments may sound negative, I believe there is a more constructive way to think about their efforts; they were both attempting to organize computational tasks into larger frameworks such as what is now known as the Chomsky Hierarchy and algorithmic complexity. Section 5 will propose an organizing framework for deep nets. Deep nets are probably not the solution to all the world’s problems. They don’t do the impossible (solve the halting problem), and they probably aren’t great at many tasks such as sorting large vectors and multiplying large matrices. In practice, deep nets have produced extremely exciting results in vision and speech, though other tasks may be more challenging for deep nets." @default.
- W2892238237 created "2018-09-27" @default.
- W2892238237 creator A5016543371 @default.
- W2892238237 date "2018-01-01" @default.
- W2892238237 modified "2023-10-06" @default.
- W2892238237 title "Minsky, Chomsky and Deep Nets" @default.
- W2892238237 cites W2079145130 @default.
- W2892238237 cites W2126160338 @default.
- W2892238237 cites W2882319491 @default.
- W2892238237 cites W2993383518 @default.
- W2892238237 cites W4229781645 @default.
- W2892238237 doi "https://doi.org/10.1007/978-3-030-00794-2_1" @default.
- W2892238237 hasPublicationYear "2018" @default.
- W2892238237 type Work @default.
- W2892238237 sameAs 2892238237 @default.
- W2892238237 citedByCount "0" @default.
- W2892238237 crossrefType "book-chapter" @default.
- W2892238237 hasAuthorship W2892238237A5016543371 @default.
- W2892238237 hasConcept C108583219 @default.
- W2892238237 hasConcept C111696304 @default.
- W2892238237 hasConcept C154945302 @default.
- W2892238237 hasConcept C15744967 @default.
- W2892238237 hasConcept C17744445 @default.
- W2892238237 hasConcept C188147891 @default.
- W2892238237 hasConcept C199360897 @default.
- W2892238237 hasConcept C199539241 @default.
- W2892238237 hasConcept C2778701210 @default.
- W2892238237 hasConcept C2780586970 @default.
- W2892238237 hasConcept C41008148 @default.
- W2892238237 hasConcept C50644808 @default.
- W2892238237 hasConcept C53893814 @default.
- W2892238237 hasConcept C60908668 @default.
- W2892238237 hasConcept C80444323 @default.
- W2892238237 hasConcept C92273848 @default.
- W2892238237 hasConcept C98045186 @default.
- W2892238237 hasConceptScore W2892238237C108583219 @default.
- W2892238237 hasConceptScore W2892238237C111696304 @default.
- W2892238237 hasConceptScore W2892238237C154945302 @default.
- W2892238237 hasConceptScore W2892238237C15744967 @default.
- W2892238237 hasConceptScore W2892238237C17744445 @default.
- W2892238237 hasConceptScore W2892238237C188147891 @default.
- W2892238237 hasConceptScore W2892238237C199360897 @default.
- W2892238237 hasConceptScore W2892238237C199539241 @default.
- W2892238237 hasConceptScore W2892238237C2778701210 @default.
- W2892238237 hasConceptScore W2892238237C2780586970 @default.
- W2892238237 hasConceptScore W2892238237C41008148 @default.
- W2892238237 hasConceptScore W2892238237C50644808 @default.
- W2892238237 hasConceptScore W2892238237C53893814 @default.
- W2892238237 hasConceptScore W2892238237C60908668 @default.
- W2892238237 hasConceptScore W2892238237C80444323 @default.
- W2892238237 hasConceptScore W2892238237C92273848 @default.
- W2892238237 hasConceptScore W2892238237C98045186 @default.
- W2892238237 hasLocation W28922382371 @default.
- W2892238237 hasOpenAccess W2892238237 @default.
- W2892238237 hasPrimaryLocation W28922382371 @default.
- W2892238237 hasRelatedWork W1512200928 @default.
- W2892238237 hasRelatedWork W2016590776 @default.
- W2892238237 hasRelatedWork W2029118173 @default.
- W2892238237 hasRelatedWork W2072590534 @default.
- W2892238237 hasRelatedWork W2105341221 @default.
- W2892238237 hasRelatedWork W2186714877 @default.
- W2892238237 hasRelatedWork W2290114244 @default.
- W2892238237 hasRelatedWork W2321093047 @default.
- W2892238237 hasRelatedWork W2407716915 @default.
- W2892238237 hasRelatedWork W2515618390 @default.
- W2892238237 hasRelatedWork W2527340794 @default.
- W2892238237 hasRelatedWork W2557676948 @default.
- W2892238237 hasRelatedWork W2566567451 @default.
- W2892238237 hasRelatedWork W2611575043 @default.
- W2892238237 hasRelatedWork W2771139657 @default.
- W2892238237 hasRelatedWork W3151189540 @default.
- W2892238237 hasRelatedWork W3163701712 @default.
- W2892238237 hasRelatedWork W78652411 @default.
- W2892238237 hasRelatedWork W869240460 @default.
- W2892238237 hasRelatedWork W2565163850 @default.
- W2892238237 isParatext "false" @default.
- W2892238237 isRetracted "false" @default.
- W2892238237 magId "2892238237" @default.
- W2892238237 workType "book-chapter" @default.