Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892238250> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2892238250 endingPage "715" @default.
- W2892238250 startingPage "695" @default.
- W2892238250 abstract "While there has been no shortage of discussion of urban big data, smart cities, and cities as complex systems, there has been less discussion of the implications of big data as a source of individual data for planning and social science research. This study takes advantage of increasingly available land parcel and business establishment data to analyze how the measurement of proximity to urban services or amenities performed in many fields can be impacted by using these data—which can be considered “individual” when compared to aggregated origins or destinations. We use business establishment data across five distinctive US cities: Long Beach, Irvine, and Moreno Valley in California; Milwaukee, Wisconsin; and the New York borough of Staten Island. In these case studies, we show how aggregation error, a previously recognized concern in using census-type data, can be minimized through careful choice of distance measures. Informed by these regions, we provide recommendations for researchers evaluating the potential risks of a measurement strategy that differs from the “gold standard” of network distance from individually measured, point-based origins and destinations. We find limited support for previous hypotheses regarding measurement error based on the abundance or clustering of urban services or amenities, though further research is merited. Importantly, these new data sources reveal vast differences across cities, underscoring how accurate proximity measurement necessitates a critical understanding of the nuances of the urban landscape under investigation as measures appear heavily influenced by a city’s street layouts and historical development trajectories." @default.
- W2892238250 created "2018-09-27" @default.
- W2892238250 creator A5005425276 @default.
- W2892238250 creator A5031940293 @default.
- W2892238250 date "2018-09-12" @default.
- W2892238250 modified "2023-09-27" @default.
- W2892238250 title "Parcels, points, and proximity: Can exhaustive sources of big data improve measurement in cities?" @default.
- W2892238250 cites W1898744853 @default.
- W2892238250 cites W1971448714 @default.
- W2892238250 cites W1973133435 @default.
- W2892238250 cites W1989014245 @default.
- W2892238250 cites W1998601072 @default.
- W2892238250 cites W2017403812 @default.
- W2892238250 cites W2020117607 @default.
- W2892238250 cites W2033648205 @default.
- W2892238250 cites W2042593386 @default.
- W2892238250 cites W2045879595 @default.
- W2892238250 cites W2050384317 @default.
- W2892238250 cites W2066473934 @default.
- W2892238250 cites W2099385862 @default.
- W2892238250 cites W2101371478 @default.
- W2892238250 cites W2103921182 @default.
- W2892238250 cites W2111025797 @default.
- W2892238250 cites W2112031167 @default.
- W2892238250 cites W2133757074 @default.
- W2892238250 cites W2136671840 @default.
- W2892238250 cites W2140574002 @default.
- W2892238250 cites W2141644033 @default.
- W2892238250 cites W2149031012 @default.
- W2892238250 cites W2149237403 @default.
- W2892238250 cites W2175882902 @default.
- W2892238250 cites W2277932823 @default.
- W2892238250 cites W2286511009 @default.
- W2892238250 cites W2319453161 @default.
- W2892238250 cites W2512215985 @default.
- W2892238250 cites W2519389122 @default.
- W2892238250 cites W2770820547 @default.
- W2892238250 cites W4236505851 @default.
- W2892238250 doi "https://doi.org/10.1177/2399808318797135" @default.
- W2892238250 hasPublicationYear "2018" @default.
- W2892238250 type Work @default.
- W2892238250 sameAs 2892238250 @default.
- W2892238250 citedByCount "1" @default.
- W2892238250 countsByYear W28922382502022 @default.
- W2892238250 crossrefType "journal-article" @default.
- W2892238250 hasAuthorship W2892238250A5005425276 @default.
- W2892238250 hasAuthorship W2892238250A5031940293 @default.
- W2892238250 hasConcept C124101348 @default.
- W2892238250 hasConcept C144024400 @default.
- W2892238250 hasConcept C148383697 @default.
- W2892238250 hasConcept C149923435 @default.
- W2892238250 hasConcept C166957645 @default.
- W2892238250 hasConcept C18918823 @default.
- W2892238250 hasConcept C205649164 @default.
- W2892238250 hasConcept C2522767166 @default.
- W2892238250 hasConcept C2524010 @default.
- W2892238250 hasConcept C2776687071 @default.
- W2892238250 hasConcept C28719098 @default.
- W2892238250 hasConcept C2908647359 @default.
- W2892238250 hasConcept C33923547 @default.
- W2892238250 hasConcept C41008148 @default.
- W2892238250 hasConcept C52130261 @default.
- W2892238250 hasConcept C75684735 @default.
- W2892238250 hasConceptScore W2892238250C124101348 @default.
- W2892238250 hasConceptScore W2892238250C144024400 @default.
- W2892238250 hasConceptScore W2892238250C148383697 @default.
- W2892238250 hasConceptScore W2892238250C149923435 @default.
- W2892238250 hasConceptScore W2892238250C166957645 @default.
- W2892238250 hasConceptScore W2892238250C18918823 @default.
- W2892238250 hasConceptScore W2892238250C205649164 @default.
- W2892238250 hasConceptScore W2892238250C2522767166 @default.
- W2892238250 hasConceptScore W2892238250C2524010 @default.
- W2892238250 hasConceptScore W2892238250C2776687071 @default.
- W2892238250 hasConceptScore W2892238250C28719098 @default.
- W2892238250 hasConceptScore W2892238250C2908647359 @default.
- W2892238250 hasConceptScore W2892238250C33923547 @default.
- W2892238250 hasConceptScore W2892238250C41008148 @default.
- W2892238250 hasConceptScore W2892238250C52130261 @default.
- W2892238250 hasConceptScore W2892238250C75684735 @default.
- W2892238250 hasIssue "4" @default.
- W2892238250 hasLocation W28922382501 @default.
- W2892238250 hasOpenAccess W2892238250 @default.
- W2892238250 hasPrimaryLocation W28922382501 @default.
- W2892238250 hasRelatedWork W1996408511 @default.
- W2892238250 hasRelatedWork W2018856831 @default.
- W2892238250 hasRelatedWork W2121631638 @default.
- W2892238250 hasRelatedWork W2331310881 @default.
- W2892238250 hasRelatedWork W2577361510 @default.
- W2892238250 hasRelatedWork W2792950971 @default.
- W2892238250 hasRelatedWork W2811312035 @default.
- W2892238250 hasRelatedWork W283861743 @default.
- W2892238250 hasRelatedWork W3137885267 @default.
- W2892238250 hasRelatedWork W647054931 @default.
- W2892238250 hasVolume "47" @default.
- W2892238250 isParatext "false" @default.
- W2892238250 isRetracted "false" @default.
- W2892238250 magId "2892238250" @default.
- W2892238250 workType "article" @default.