Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892248367> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2892248367 abstract "Existing semantic segmentation models of urban areas have shown to perform well in a supervised setting. However, collecting lots of annotated images from each city to train such models is time-consuming or difficult. In addition, when transferring the segmentation model from the trained city (source domain) to an unseen city (target domain), the performance will largely degrade due to the domain shift. For this reason, we propose a domain adaptation method with a domain similarity discriminator to eliminate such domain shift in the framework of adversarial learning. Contrary to the single-input adversarial network, our domain similarity discriminator, which consists of a Siamese network, is able to measure the similarity of the pairwise-input data. In this way, we can use more information about the pairwise-input to measure the similarity between different distributions so as to address the problem of domain shift. Experimental results demonstrate that our approach outperforms the competing methods on three different cities." @default.
- W2892248367 created "2018-09-27" @default.
- W2892248367 creator A5003020291 @default.
- W2892248367 creator A5040673285 @default.
- W2892248367 creator A5064925158 @default.
- W2892248367 creator A5072815126 @default.
- W2892248367 date "2018-10-01" @default.
- W2892248367 modified "2023-10-12" @default.
- W2892248367 title "Adversarial Domain Adaptation with a Domain Similarity Discriminator for Semantic Segmentation of Urban Areas" @default.
- W2892248367 cites W2096943734 @default.
- W2892248367 cites W2104094955 @default.
- W2892248367 cites W2108598243 @default.
- W2892248367 cites W2115403315 @default.
- W2892248367 cites W2171590421 @default.
- W2892248367 cites W2395611524 @default.
- W2892248367 cites W2593768305 @default.
- W2892248367 cites W2739759330 @default.
- W2892248367 cites W2963881378 @default.
- W2892248367 doi "https://doi.org/10.1109/icip.2018.8451010" @default.
- W2892248367 hasPublicationYear "2018" @default.
- W2892248367 type Work @default.
- W2892248367 sameAs 2892248367 @default.
- W2892248367 citedByCount "11" @default.
- W2892248367 countsByYear W28922483672019 @default.
- W2892248367 countsByYear W28922483672020 @default.
- W2892248367 countsByYear W28922483672021 @default.
- W2892248367 countsByYear W28922483672022 @default.
- W2892248367 countsByYear W28922483672023 @default.
- W2892248367 crossrefType "proceedings-article" @default.
- W2892248367 hasAuthorship W2892248367A5003020291 @default.
- W2892248367 hasAuthorship W2892248367A5040673285 @default.
- W2892248367 hasAuthorship W2892248367A5064925158 @default.
- W2892248367 hasAuthorship W2892248367A5072815126 @default.
- W2892248367 hasConcept C103278499 @default.
- W2892248367 hasConcept C115961682 @default.
- W2892248367 hasConcept C119857082 @default.
- W2892248367 hasConcept C124101348 @default.
- W2892248367 hasConcept C130318100 @default.
- W2892248367 hasConcept C134306372 @default.
- W2892248367 hasConcept C153180895 @default.
- W2892248367 hasConcept C154945302 @default.
- W2892248367 hasConcept C184898388 @default.
- W2892248367 hasConcept C2776434776 @default.
- W2892248367 hasConcept C2776517306 @default.
- W2892248367 hasConcept C2779803651 @default.
- W2892248367 hasConcept C2780009758 @default.
- W2892248367 hasConcept C33923547 @default.
- W2892248367 hasConcept C36503486 @default.
- W2892248367 hasConcept C37736160 @default.
- W2892248367 hasConcept C41008148 @default.
- W2892248367 hasConcept C76155785 @default.
- W2892248367 hasConcept C89600930 @default.
- W2892248367 hasConcept C94915269 @default.
- W2892248367 hasConcept C95623464 @default.
- W2892248367 hasConceptScore W2892248367C103278499 @default.
- W2892248367 hasConceptScore W2892248367C115961682 @default.
- W2892248367 hasConceptScore W2892248367C119857082 @default.
- W2892248367 hasConceptScore W2892248367C124101348 @default.
- W2892248367 hasConceptScore W2892248367C130318100 @default.
- W2892248367 hasConceptScore W2892248367C134306372 @default.
- W2892248367 hasConceptScore W2892248367C153180895 @default.
- W2892248367 hasConceptScore W2892248367C154945302 @default.
- W2892248367 hasConceptScore W2892248367C184898388 @default.
- W2892248367 hasConceptScore W2892248367C2776434776 @default.
- W2892248367 hasConceptScore W2892248367C2776517306 @default.
- W2892248367 hasConceptScore W2892248367C2779803651 @default.
- W2892248367 hasConceptScore W2892248367C2780009758 @default.
- W2892248367 hasConceptScore W2892248367C33923547 @default.
- W2892248367 hasConceptScore W2892248367C36503486 @default.
- W2892248367 hasConceptScore W2892248367C37736160 @default.
- W2892248367 hasConceptScore W2892248367C41008148 @default.
- W2892248367 hasConceptScore W2892248367C76155785 @default.
- W2892248367 hasConceptScore W2892248367C89600930 @default.
- W2892248367 hasConceptScore W2892248367C94915269 @default.
- W2892248367 hasConceptScore W2892248367C95623464 @default.
- W2892248367 hasLocation W28922483671 @default.
- W2892248367 hasOpenAccess W2892248367 @default.
- W2892248367 hasPrimaryLocation W28922483671 @default.
- W2892248367 hasRelatedWork W2119195667 @default.
- W2892248367 hasRelatedWork W2125133600 @default.
- W2892248367 hasRelatedWork W2294242553 @default.
- W2892248367 hasRelatedWork W2358805260 @default.
- W2892248367 hasRelatedWork W2470188790 @default.
- W2892248367 hasRelatedWork W2562469482 @default.
- W2892248367 hasRelatedWork W2892248367 @default.
- W2892248367 hasRelatedWork W2932106273 @default.
- W2892248367 hasRelatedWork W2977734077 @default.
- W2892248367 hasRelatedWork W3016869290 @default.
- W2892248367 isParatext "false" @default.
- W2892248367 isRetracted "false" @default.
- W2892248367 magId "2892248367" @default.
- W2892248367 workType "article" @default.