Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892262505> ?p ?o ?g. }
- W2892262505 abstract "Background Genomics-based prediction could be useful since genome-wide genotyping costs less than many clinical tests. We tested whether machine learning methods could provide a clinically-relevant genomic prediction of quantitative ultrasound speed of sound (SOS)—a risk factor for osteoporotic fracture. Methods We used 341,449 individuals from UK Biobank with SOS measures to develop genomically-predicted SOS (gSOS) using machine learning algorithms. We selected the optimal algorithm in 5,335 independent individuals and then validated it and its ability to predict incident fracture in an independent test dataset (N = 80,027). Finally, we explored whether genomic pre-screening could complement a UK-based osteoporosis screening strategy, based on the validated tool FRAX. Results gSOS explained 4.8-fold more variance in SOS than FRAX clinical risk factors (CRF) alone ( r 2 = 23% vs. 4.8%). A standard deviation decrease in gSOS, adjusting for the CRF-FRAX score was associated with a higher increased odds of incident major osteoporotic fracture (1,491 cases / 78,536 controls, OR = 1.91 [1.70-2.14], P = 10 -28 ) than that for measured SOS (OR = 1.60 [1.50-1.69], P = 10 -52 ) and femoral neck bone mineral density (147 cases / 4,594 controls, OR = 1.53 [1.27-1.83], P = 10 -6 ). Individuals in the bottom decile of the gSOS distribution had a 3.25-fold increased risk of major osteoporotic fracture (P = 10 -18 ) compared to the top decile. A gSOS-based FRAX score, identified individuals at high risk for incident major osteoporotic fractures better than the CRF-FRAX score (P = 10 -14 ). Introducing a genomic pre-screening step into osteoporosis screening in 4,741 individuals reduced the number of required clinical visits from 2,455 to 1,273 and the number of BMD tests from 1,013 to 473, while only reducing the sensitivity to identify individuals eligible for therapy from 99% to 95%. Interpretation The use of genotypes in a machine learning algorithm resulted in a clinically-relevant prediction of SOS and fracture, with potential to impact healthcare resource utilization. Research in Context Evidence Before this Study Genome-wide association studies have identified many loci associated with risk of clinically-relevant fracture risk factors, such as SOS. Yet, it is unclear if such information can be leveraged to identify those at risk for disease outcomes, such as osteoporotic fractures. Most previous attempts to predict disease risk from genotypes have used polygenic risk scores, which may not be optimal for genomic-prediction. Despite these obstacles, genomic-prediction could enable screening programs to be more efficient since most people screened in a population are not determined to have a level of risk that would prompt a change in clinical care. Genomic pre-screening could help identify individuals whose risk of disease is low enough that they are unlikely to benefit from screening. Added Value of this Study Using a large dataset of 426,811 individuals we trained and tested a machine learning algorithm to genomically-predict SOS. This metric, gSOS, had performance characteristics for predicting fracture risk that were similar to measured SOS and femoral neck BMD. Implementing a gSOS-based pre-screening step into the UK-based osteoporosis treatment guidelines reduced the number of individuals who would require screening clinical visits and skeletal testing by approximately 50%, while having little impact on the sensitivity to identify individuals at high risk for osteoporotic fracture. Implications of all of the Available Evidence Clinically-relevant genomic prediction of heritable traits is feasible using the machine learning algorithm presented here in large sample sizes. Genome-wide genotyping is now less expensive than many clinical tests, needs to be performed once over a lifetime and could risk stratify for multiple heritable traits and diseases years prior to disease onset, providing an opportunity for prevention. The implementation of such algorithms could improve screening efficiency, yet their cost-effectiveness will need to be ascertained in subsequent analyses." @default.
- W2892262505 created "2018-09-27" @default.
- W2892262505 creator A5004910988 @default.
- W2892262505 creator A5011048149 @default.
- W2892262505 creator A5024756058 @default.
- W2892262505 creator A5034267645 @default.
- W2892262505 creator A5035461704 @default.
- W2892262505 creator A5037004738 @default.
- W2892262505 creator A5043430547 @default.
- W2892262505 creator A5047582694 @default.
- W2892262505 creator A5047621888 @default.
- W2892262505 creator A5058920702 @default.
- W2892262505 creator A5059659798 @default.
- W2892262505 creator A5069693172 @default.
- W2892262505 creator A5069876930 @default.
- W2892262505 creator A5071522601 @default.
- W2892262505 creator A5075344723 @default.
- W2892262505 creator A5075674266 @default.
- W2892262505 creator A5079005099 @default.
- W2892262505 creator A5080591144 @default.
- W2892262505 creator A5081737623 @default.
- W2892262505 date "2018-09-11" @default.
- W2892262505 modified "2023-10-14" @default.
- W2892262505 title "Machine Learning to Predict Osteoporotic Fracture Risk from Genotypes" @default.
- W2892262505 cites W1895445569 @default.
- W2892262505 cites W1907868928 @default.
- W2892262505 cites W1966775465 @default.
- W2892262505 cites W1970782797 @default.
- W2892262505 cites W2004910511 @default.
- W2892262505 cites W2005229665 @default.
- W2892262505 cites W2018398930 @default.
- W2892262505 cites W2022189136 @default.
- W2892262505 cites W2026012728 @default.
- W2892262505 cites W2065766094 @default.
- W2892262505 cites W2070770519 @default.
- W2892262505 cites W2082704080 @default.
- W2892262505 cites W2084695544 @default.
- W2892262505 cites W2086671191 @default.
- W2892262505 cites W2101359494 @default.
- W2892262505 cites W2106504381 @default.
- W2892262505 cites W2110768118 @default.
- W2892262505 cites W2121514846 @default.
- W2892262505 cites W2128977360 @default.
- W2892262505 cites W2139796029 @default.
- W2892262505 cites W2152799367 @default.
- W2892262505 cites W2511515754 @default.
- W2892262505 cites W2581082771 @default.
- W2892262505 cites W2599867508 @default.
- W2892262505 cites W2737435306 @default.
- W2892262505 cites W2751430583 @default.
- W2892262505 cites W2762638728 @default.
- W2892262505 cites W2774504697 @default.
- W2892262505 cites W2790582036 @default.
- W2892262505 cites W2791004613 @default.
- W2892262505 cites W2793627492 @default.
- W2892262505 cites W2885905590 @default.
- W2892262505 cites W2886752110 @default.
- W2892262505 cites W2951712348 @default.
- W2892262505 cites W4240494942 @default.
- W2892262505 cites W4294541781 @default.
- W2892262505 doi "https://doi.org/10.1101/413716" @default.
- W2892262505 hasPublicationYear "2018" @default.
- W2892262505 type Work @default.
- W2892262505 sameAs 2892262505 @default.
- W2892262505 citedByCount "8" @default.
- W2892262505 countsByYear W28922625052012 @default.
- W2892262505 countsByYear W28922625052019 @default.
- W2892262505 countsByYear W28922625052020 @default.
- W2892262505 countsByYear W28922625052021 @default.
- W2892262505 countsByYear W28922625052022 @default.
- W2892262505 crossrefType "posted-content" @default.
- W2892262505 hasAuthorship W2892262505A5004910988 @default.
- W2892262505 hasAuthorship W2892262505A5011048149 @default.
- W2892262505 hasAuthorship W2892262505A5024756058 @default.
- W2892262505 hasAuthorship W2892262505A5034267645 @default.
- W2892262505 hasAuthorship W2892262505A5035461704 @default.
- W2892262505 hasAuthorship W2892262505A5037004738 @default.
- W2892262505 hasAuthorship W2892262505A5043430547 @default.
- W2892262505 hasAuthorship W2892262505A5047582694 @default.
- W2892262505 hasAuthorship W2892262505A5047621888 @default.
- W2892262505 hasAuthorship W2892262505A5058920702 @default.
- W2892262505 hasAuthorship W2892262505A5059659798 @default.
- W2892262505 hasAuthorship W2892262505A5069693172 @default.
- W2892262505 hasAuthorship W2892262505A5069876930 @default.
- W2892262505 hasAuthorship W2892262505A5071522601 @default.
- W2892262505 hasAuthorship W2892262505A5075344723 @default.
- W2892262505 hasAuthorship W2892262505A5075674266 @default.
- W2892262505 hasAuthorship W2892262505A5079005099 @default.
- W2892262505 hasAuthorship W2892262505A5080591144 @default.
- W2892262505 hasAuthorship W2892262505A5081737623 @default.
- W2892262505 hasBestOaLocation W28922625051 @default.
- W2892262505 hasConcept C105795698 @default.
- W2892262505 hasConcept C119857082 @default.
- W2892262505 hasConcept C126322002 @default.
- W2892262505 hasConcept C147021879 @default.
- W2892262505 hasConcept C2775854910 @default.
- W2892262505 hasConcept C2776541429 @default.
- W2892262505 hasConcept C2776886416 @default.
- W2892262505 hasConcept C2777525943 @default.
- W2892262505 hasConcept C2778885795 @default.